The search session has expired. Please query the service again.
Given a subbase of a space , the game is defined for two players and who respectively pick, at the -th move, a point and a set such that . The game stops after the moves have been made and the player wins if ; otherwise is the winner. Since is an evident modification of the well-known point-open game , the primary line of research is to describe the relationship between and for a given subbase . It turns out that, for any subbase , the player has a winning strategy...
We characterize spaces with --linked bases as specially embedded subspaces of separable spaces, and derive some corollaries, such as the -productivity of the property of having a -linked base.
If Nonempty has a winning strategy against Empty in the Choquet game on a space, the space is said to be a Choquet space. Such a winning strategy allows Nonempty to consider the entire finite history of previous moves before making each new move; a stationary strategy only permits Nonempty to consider the previous move by Empty. We show that Nonempty has a stationary winning strategy for every second-countable T₁ Choquet space. More generally, Nonempty has a stationary winning strategy for...
Currently displaying 1 –
4 of
4