The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 158

Showing per page

A Čech function in ZFC

Fred Galvin, Petr Simon (2007)

Fundamenta Mathematicae

A nontrivial surjective Čech closure function is constructed in ZFC.

A C(K) Banach space which does not have the Schroeder-Bernstein property

Piotr Koszmider (2012)

Studia Mathematica

We construct a totally disconnected compact Hausdorff space K₊ which has clopen subsets K₊” ⊆ K₊’ ⊆ K₊ such that K₊” is homeomorphic to K₊ and hence C(K₊”) is isometric as a Banach space to C(K₊) but C(K₊’) is not isomorphic to C(K₊). This gives two nonisomorphic Banach spaces (necessarily nonseparable) of the form C(K) which are isomorphic to complemented subspaces of each other (even in the above strong isometric sense), providing a solution to the Schroeder-Bernstein problem for Banach spaces...

A compact Hausdorff topology that is a T₁-complement of itself

Dmitri Shakhmatov, Michael Tkachenko (2002)

Fundamenta Mathematicae

Topologies τ₁ and τ₂ on a set X are called T₁-complementary if τ₁ ∩ τ₂ = X∖F: F ⊆ X is finite ∪ ∅ and τ₁∪τ₂ is a subbase for the discrete topology on X. Topological spaces ( X , τ X ) and ( Y , τ Y ) are called T₁-complementary provided that there exists a bijection f: X → Y such that τ X and f - 1 ( U ) : U τ Y are T₁-complementary topologies on X. We provide an example of a compact Hausdorff space of size 2 which is T₁-complementary to itself ( denotes the cardinality of the continuum). We prove that the existence of a compact Hausdorff...

A construction of a Fréchet-Urysohn space, and some convergence concepts

Aleksander V. Arhangel'skii (2010)

Commentationes Mathematicae Universitatis Carolinae

Some strong versions of the Fréchet-Urysohn property are introduced and studied. We also strengthen the concept of countable tightness and generalize the notions of first-countability and countable base. A construction of a topological space is described which results, in particular, in a Tychonoff countable Fréchet-Urysohn space which is not first-countable at any point. It is shown that this space can be represented as the image of a countable metrizable space under a continuous pseudoopen mapping....

A countably cellular topological group all of whose countable subsets are closed need not be -factorizable

Mihail G. Tkachenko (2023)

Commentationes Mathematicae Universitatis Carolinae

We construct a Hausdorff topological group G such that 1 is a precalibre of G (hence, G has countable cellularity), all countable subsets of G are closed and C -embedded in G , but G is not -factorizable. This solves Problem 8.6.3 from the book “Topological Groups and Related Structures" (2008) in the negative.

A dimension raising hereditary shape equivalence

Jan Dijkstra (1996)

Fundamenta Mathematicae

We construct a hereditary shape equivalence that raises transfinite inductive dimension from ω to ω+1. This shows that ind and Ind do not admit a geometric characterisation in the spirit of Alexandroff's Essential Mapping Theorem, answering a question asked by R. Pol.

A Dowker group

Klaas Pieter Hart, Heikki J. K. Junnila, Jan van Mill (1985)

Commentationes Mathematicae Universitatis Carolinae

A group topology on the free abelian group of cardinality 𝔠 that makes its square countably compact

Ana Carolina Boero, Artur Hideyuki Tomita (2011)

Fundamenta Mathematicae

Under 𝔭 = 𝔠, we prove that it is possible to endow the free abelian group of cardinality 𝔠 with a group topology that makes its square countably compact. This answers a question posed by Madariaga-Garcia and Tomita and by Tkachenko. We also prove that there exists a Wallace semigroup (i.e., a countably compact both-sided cancellative topological semigroup which is not a topological group) whose square is countably compact. This answers a question posed by Grant.

Currently displaying 1 – 20 of 158

Page 1 Next