Strongly homotopy-commutative monoids revisited.
On construit et classifie à conjugaison équivariante près toutes les formes de contact invariantes sur un fibré principal en cercles ( compact). Si , les formes obtenues induisent sur des formes de contact dans chaque classe d’homotopie de 1-formes sans zéros : on en déduit que admet une infinité de structures de contact non isomorphes.
In this paper, we prove the existence of the theory of spectral sequences in the category of real semi normed spaces. Using this theory, we associate to any extension of discrete groups the Hochschild-Serre spectral sequence in bounded cohomology with coefficients. In addition, we give the explicit expression of the first and the second term of this spectral sequence without further hypothesis.
Beaucoup d’informations sur les groupes de cohomologie d’un espace sont obtenues à partir de la suite spectrale de Serre. Dans cet article on construit une suite spectrale de Serre dans le cas “non stable”. Cette suite spectrale “non stable” permet des calculs de groupes d’homotopie d’espaces fonctionnels.
Il est démontré que toute a.d.g.c. ayant un modèle minimal de Sullivan de type fini peut être représentée par une certaine algèbre de Lie différentielle graduée de dérivations. En particulier on peut ainsi représenter le type d’homotopie rationnelle d’un espace topologique.