Previous Page 5

Displaying 81 – 97 of 97

Showing per page

Motivic functors.

Dundas, Bjørn Ian, Röndigs, Oliver, Østvær, Paul Arne (2003)

Documenta Mathematica

Multifibrations. A class of shape fibrations with the path lifting property

Antonio Giraldo, José M. R. Sanjurjo (2001)

Czechoslovak Mathematical Journal

In this paper we introduce a class of maps possessing a multivalued homotopy lifting property with respect to every topological space. We call these maps multifibrations and they represent a formally stronger concept than that of shape fibration. Multifibrations have the interesting property of being characterized in a completely intrinsic way by a path lifting property involving only the total and the base space of the fibration. We also show that multifibrations (and also, with some restrictions,...

Multiplication is Discontinuous in the Hawaiian Earring Group (with the Quotient Topology)

Paul Fabel (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

The natural quotient map q from the space of based loops in the Hawaiian earring onto the fundamental group provides a naturally occuring example of a quotient map such that q × q fails to be a quotient map. With the quotient topology, this example shows π₁(X,p) can fail to be a topological group if X is locally path connected.

Multiplicative maps from Hℤ to a ring spectrum R-a naive version

Stanisław Betley (2012)

Fundamenta Mathematicae

The paper is devoted to the study of the space of multiplicative maps from the Eilenberg-MacLane spectrum Hℤ to an arbitrary ring spectrum R. We try to generalize the approach of Schwede [Geom. Topol. 8 (2004)], where the case of a very special R was studied. In particular we propose a definition of a formal group law in any ring spectrum, which might be of independent interest.

Multiplicative operations in the Steenrod algebra for Brown–Peterson cohomology

Michael Slack (1999)

Fundamenta Mathematicae

A family of multiplicative operations in the BP Steenrod algebra is defined which is related to the total Steenrod power operation from the mod p Steenrod algebra. The main result of the paper links the BP versions of the total Steenrod power with the formal group approach to multiplicative BP operations by identifying the p-typical curves (power series) which correspond to these operations. Some relations are derived from this identification, and a short proof of the Hopf invariant one theorem...

Currently displaying 81 – 97 of 97

Previous Page 5