Displaying 141 – 160 of 5443

Showing per page

A logarithmic Sobolev form of the Li-Yau parabolic inequality.

Dominique Bakry, Michel Ledoux (2006)

Revista Matemática Iberoamericana

We present a finite dimensional version of the logarithmic Sobolev inequality for heat kernel measures of non-negatively curved diffusion operators that contains and improves upon the Li-Yau parabolic inequality. This new inequality is of interest already in Euclidean space for the standard Gaussian measure. The result may also be seen as an extended version of the semigroup commutation properties under curvature conditions. It may be applied to reach optimal Euclidean logarithmic Sobolev inequalities...

A lossless reduction of geodesics on supermanifolds to non-graded differential geometry

Stéphane Garnier, Matthias Kalus (2014)

Archivum Mathematicum

Let = ( M , 𝒪 ) be a smooth supermanifold with connection and Batchelor model 𝒪 Γ Λ E * . From ( , ) we construct a connection on the total space of the vector bundle E M . This reduction of is well-defined independently of the isomorphism 𝒪 Γ Λ E * . It erases information, but however it turns out that the natural identification of supercurves in (as maps from 1 | 1 to ) with curves in E restricts to a 1 to 1 correspondence on geodesics. This bijection is induced by a natural identification of initial conditions for geodesics...

Currently displaying 141 – 160 of 5443