The search session has expired. Please query the service again.
Displaying 1681 –
1700 of
10054
We give characterizations of the uniform distribution in terms of moments of order statistics when the sample size is random. Special cases of a random sample size (logarithmic series, geometrical, binomial, negative binomial, and Poisson distribution) are also considered.
The generalized Lorenz order and the absolute Lorenz order are used in economics to compare income distributions in terms of social welfare. In Section 2, we show that these orders are equivalent to two stochastic orders, the concave order and the dilation order, which are used to compare the dispersion of probability distributions. In Section 3, a sufficient condition for the absolute Lorenz order, which is often easy to verify in practice, is presented. This condition is applied in Section 4 to...
Our purpose is to investigate properties for processes with stationary and independent increments under -expectation. As applications, we prove the martingale characterization of -Brownian motion and present a pathwise decomposition theorem for generalized -Brownian motion.
Some characterizations of random approximations are obtained in a locally convex space through duality theory.
Two characterizations of the exponential distribution among distributions with support the nonnegative real axis are presented. The characterizations are based on certain properties of the characteristic function of the exponential random variable. Counterexamples concerning more general possible versions of the characterizations are given.
In this paper we give a characterization of the multivariate normal distribution through the conditional distributions in the most general case, which include the singular distribution.
In this paper, we develop bounds on the distribution function of the empirical mean for general ergodic Markov processes having a spectral gap. Our approach is based on the perturbation theory for linear operators, following the technique introduced by Gillman.
In this paper, we develop bounds on the distribution function of the empirical
mean for general ergodic Markov processes having a spectral gap. Our approach is
based on the perturbation theory for linear operators, following the technique
introduced by Gillman.
We prove a Chevet type inequality which gives an upper bound for the norm of an isotropic log-concave unconditional random matrix in terms of the expectation of the supremum of “symmetric exponential” processes, compared to the Gaussian ones in the Chevet inequality. This is used to give a sharp upper estimate for a quantity that controls uniformly the Euclidean operator norm of the submatrices with k rows and m columns of an isotropic log-concave unconditional random matrix. We apply these estimates...
Currently displaying 1681 –
1700 of
10054