The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This note deals with the orthogonality between sequences of random variables. The main idea of the note is to apply the results on equidistant systems of points in a Hilbert space to the case of the space of real square integrable random variables. The main result gives a necessary and sufficient condition for a particular sequence of random variables (elements of which are taken from sets of equidistant elements of ) to be orthogonal to some other sequence in . The result obtained is interesting...
Geometric random sums arise in various applied problems like physics, biology, economics, risk processes, stochastic finance, queuing theory, reliability models, regenerative models, etc. Their asymptotic behaviors with convergence rates become a big subject of interest. The main purpose of this paper is to study the asymptotic behaviors of normalized geometric random sums of independent and identically distributed random variables via Gnedenko's Transfer Theorem. Moreover, using the Zolotarev probability...
We show that Billard's theorem on a.s. uniform convergence of random Fourier series with independent symmetric coefficients is not true when the coefficients are only assumed to be centered independent. We give some necessary or sufficient conditions to ensure the validity of Billard's theorem in the centered case.
Let G be a locally compact Polish group with an invariant metric. We provide sufficient and necessary conditions for the existence of a compact set A ⊆ G and a sequence such that for all n. It is noticed that such measures μ form a meager subset of all probabilities on G in the weak measure topology. If for some k the convolution power has nontrivial absolutely continuous component then a similar characterization is obtained for any locally compact, σ-compact, unimodular, Hausdorff topological...
Continuous time random walks with jump sizes equal to the corresponding waiting times for jumps are considered. Sufficient conditions for the weak convergence of such processes are established and the limiting processes are identified. Furthermore one-dimensional distributions of the limiting processes are given under an additional assumption.
Currently displaying 1 –
20 of
66