Ajustement linéaire lorsque les deux variables sont soumises à des erreurs de variances hétérogènes
BackgroundIndependence models among variables is one of the most relevant topics in epidemiology, particularly in molecular epidemiology for the study of gene-gene and gene-environment interactions. They have been studied using three main kinds of analysis: regression analysis, data mining approaches and Bayesian model selection. Recently, methods of algebraic statistics have been extensively used for applications to biology. In this paper we present...
Stair nesting allows us to work with fewer observations than the most usual form of nesting, the balanced nesting. In the case of stair nesting the amount of information for the different factors is more evenly distributed. This new design leads to greater economy, because we can work with fewer observations. In this work we present the algebraic structure of the cross of balanced nested and stair nested designs, using binary operations on commutative Jordan algebras. This new cross requires fewer...
Step nesting designs may be very useful since they require fewer observations than the usual balanced nesting models. The number of treatments in balanced nesting design is the product of the number of levels in each factor. This number may be too large. As an alternative, in step nesting designs the number of treatments is the sum of the factor levels. Thus these models lead to a great economy and it is easy to carry out inference. To study the algebraic structure of step nesting designs we introduce...