The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 121 –
140 of
206
In the area of stress-strength models there has been a large
amount of work as regards estimation of the reliability R = Pr(X2 < X1 )
when X1 and X2 are independent random variables belonging to the same
univariate family of distributions. The algebraic form for R = Pr(X2 < X1 )
has been worked out for the majority of the well-known distributions including
Normal, uniform, exponential, gamma, weibull and pareto. However,
there are still many other distributions for which the form of R is...
This paper deals with the reliability of composite measurement consisting of true-false items obeying the Rasch model. A definition of reliability in the Rasch model is proposed and the connection to the classical definition of reliability is shown. As a modification of the classical estimator Cronbach's alpha, a new estimator logistic alpha is proposed. Finally, the properties of the new estimator are studied via simulations in the Rasch model.
The statistical analysis of compositional data, multivariate data when all its components are strictly positive real numbers that carry only relative information and having a simplex as the sample space, is in the state-of-the-art devoted to represent compositions in orthonormal bases with respect to the geometry on the simplex and thus provide an isometric transformation of the data to an usual linear space, where standard statistical methods can be used (e.g. [2], [4], [5], [9]). However, in some...
Kernel smoothers belong to the most popular nonparametric functional estimates used for describing data structure. They can be applied to the fix design regression model as well as to the random design regression model. The main idea of this paper is to present a construction of the optimum kernel and optimum boundary kernel by means of the Gegenbauer and Legendre polynomials.
We investigate two constructions that, starting with two bivariate copulas, give rise to a new bivariate and trivariate copula, respectively. In particular, these constructions are generalizations of the -product and the -product for copulas introduced by Darsow, Nguyen and Olsen in 1992. Some properties of these constructions are studied, especially their relationships with ordinal sums and shuffles of Min.
Some paradoxes on the maximum likelihood principle are presented and commented. We consider the properties of the maximum likelihood estimators as a particular case of the M-estimators. We propose a unified theory which includes non-dominated models. Several examples are given.
Currently displaying 121 –
140 of
206