The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We propose a general partition-based strategy to estimate conditional density with candidate densities that are piecewise constant with respect to the covariate. Capitalizing on a general penalized maximum likelihood model selection result, we prove, on two specific examples, that the penalty of each model can be chosen roughly proportional to its dimension. We first study a classical strategy in which the densities are chosen piecewise conditional according to the variable. We then consider Gaussian...
This paper deals with the problem of estimating a regression function f, in a random design framework. We build and study two adaptive estimators based on model selection, applied with warped bases. We start with a collection of finite dimensional linear spaces, spanned by orthonormal bases. Instead of expanding directly the target function f on these bases, we rather consider the expansion of h = f ∘ G-1, where G is the cumulative distribution function of the design, following Kerkyacharian and...
With the pioneering work of [Pardoux and Peng,
Syst. Contr. Lett.14 (1990) 55–61; Pardoux and Peng,
Lecture Notes in Control and Information Sciences176
(1992) 200–217]. We have at our disposal
stochastic processes which solve the so-called backward stochastic
differential equations. These processes provide us with a Feynman-Kac
representation for the solutions of a class of nonlinear partial differential equations (PDEs) which appear
in many applications in the field of Mathematical Finance....
Currently displaying 1 –
3 of
3