Displaying 61 – 80 of 114

Showing per page

Numerical approximation of effective coefficients in stochastic homogenization of discrete elliptic equations

Antoine Gloria (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce and analyze a numerical strategy to approximate effective coefficients in stochastic homogenization of discrete elliptic equations. In particular, we consider the simplest case possible: An elliptic equation on the d-dimensional lattice d with independent and identically distributed conductivities on the associated edges. Recent results by Otto and the author quantify the error made by approximating the homogenized coefficient by the averaged energy of a regularized corrector (with...

Numerical computation of solitons for optical systems

Laurent Di Menza (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we present numerical methods for the determination of solitons, that consist in spatially localized stationary states of nonlinear scalar equations or coupled systems arising in nonlinear optics. We first use the well-known shooting method in order to find excited states (characterized by the number k of nodes) for the classical nonlinear Schrödinger equation. Asymptotics can then be derived in the limits of either large k are large nonlinear exponents σ . In a second part, we compute...

Numerical computation of solitons for optical systems

Laurent Di Menza (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we present numerical methods for the determination of solitons, that consist in spatially localized stationary states of nonlinear scalar equations or coupled systems arising in nonlinear optics. We first use the well-known shooting method in order to find excited states (characterized by the number k of nodes) for the classical nonlinear Schrödinger equation. Asymptotics can then be derived in the limits of either large k are large nonlinear exponents σ. In a second part, we compute...

Numerical homogenization: survey, new results, and perspectives

Antoine Gloria (2012)

ESAIM: Proceedings

These notes give a state of the art of numerical homogenization methods for linear elliptic equations. The guideline of these notes is analysis. Most of the numerical homogenization methods can be seen as (more or less different) discretizations of the same family of continuous approximate problems, which H-converges to the homogenized problem. Likewise numerical correctors may also be interpreted as approximations of Tartar’s correctors. Hence the...

On a nonlinear stationary problem in unbounded domains.

Carlos Frederico Vasconcellos (1992)

Revista Matemática de la Universidad Complutense de Madrid

We study existence and some properties of solutions of the nonlinear elliptic equation N(x,a(u))Lu = f in unbounded domains. The above method is not a variational problem. Our techniques involve fixed point arguments and Galerkin method.

On the Asymptotic Analys of a Non-Symmetric Bar

Abderrazzak Majd (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study the 3-D elasticity problem in the case of a non-symmetric heterogeneous rod. The asymptotic expansion of the solution is constructed. The coercitivity of the homogenized equation is proved. Estimates are derived for the difference between the truncated series and the exact solution.

On the numerical solution of axisymmetric domain optimization problems

Ivan Hlaváček, Raino Mäkinen (1991)

Applications of Mathematics

An axisymmetric second order elliptic problem with mixed boundarz conditions is considered. A part of the boundary has to be found so as to minimize one of four types of cost functionals. The numerical realization is presented in detail. The convergence of piecewise linear approximations is proved. Several numerical examples are given.

Shape optimization of elastic axisymmetric bodies

Ivan Hlaváček (1989)

Aplikace matematiky

The shape of the meridian curve of an elastic body is optimized within a class of Lipschitz functions. Only axisymmetric mixed boundary value problems are considered. Four different cost functionals are used and approximate piecewise linear solutions defined on the basis of a finite element technique. Some convergence and existence results are derived by means of the theory of the appropriate weighted Sobolev spaces.

Currently displaying 61 – 80 of 114