Counting occurrences of some subword patterns.
La représentation visuelle d'une hiérarchie induit un ordre sur les singletons. Si l'on désire représenter la même hiérarchie en tenant compte de contraintes extérieures (ordre des singletons induit par une autre hiérarchie, une partition, un indice de dissimilarité, par exemple) des croisements peuvent apparaître. Il y a un croisement dans la représentation visuelle d'une hiérarchie quand une branche horizontale (associée à un palier) est coupée par une branche verticale associée à un singleton....
We propose a method that enables effective code reuse between evolutionary runs that solve a set of related visual learning tasks. We start with introducing a visual learning approach that uses genetic programming individuals to recognize objects. The process of recognition is generative, i.e., requires the learner to restore the shape of the processed object. This method is extended with a code reuse mechanism by introducing a crossbreeding operator that allows importing the genetic material from...
The purpose of this article is to introduce a method for computing the homology groups of cellular complexes composed of cubes. We will pay attention to issues of storage and efficiency in performing computations on large complexes which will be required in applications to the computation of the Conley index. The algorithm used in the homology computations is based on a local reduction procedure, and we give a subquadratic estimate of its computational complexity. This estimate is rigorous in two...
In the present report, we show current status of mathematical journals in Japan. Because most of their electronic edition have been loaded on various digital repositories with support of OAI-PMH, we have been able to design a subject based portal website and visual user interface which consists of harvested metadata of the journals. The outline of the portal website is reported also.
We first define the curvature indices of vertices of digital objects. Second, using these indices, we define the principal normal vectors of digital curves and surfaces. These definitions allow us to derive the Gauss-Bonnet theorem for digital objects. Third, we introduce curvature flow for isothetic polytopes defined in a digital space.