Complete presentations of Coxeter groups.
We present a variation of a method of classification based in uncertainty on credal set. Similarly to its origin it use the imprecise Dirichlet model to create the credal set and the same uncertainty measures. It take into account sets of two variables to reduce the uncertainty and to seek the direct relations between the variables in the data base and the variable to be classified. The success are equivalent to the success of the first method except in those where there are a direct relations between...
The aim of this paper is to evaluate the growth order of the complexity function (in rectangles) for two-dimensional sequences generated by a linear cellular automaton with coefficients in , and polynomial initial condition. We prove that the complexity function is quadratic when l is a prime and that it increases with respect to the number of distinct prime factors of l.
We compare various computational complexity classes defined within the framework of membrane systems, a distributed parallel computing device which is inspired from the functioning of the cell, with usual computational complexity classes for Turing machines. In particular, we focus our attention on the comparison among complexity classes for membrane systems with active membranes (where new membranes can be created by division of existing membranes) and the classes PSPACE, EXP, and EXPSPACE.
Let be an ergodic translation on the compact group and a continuity set, i.e. a subset with topological boundary of Haar measure 0. An infinite binary sequence defined by if and otherwise, is called a Hartman sequence. This paper studies the growth rate of , where denotes the number of binary words of length occurring in . The growth rate is always subexponential and this result is optimal. If is an ergodic translation