The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 141 –
160 of
174
We consider words coding exchange of three intervals with
permutation (3,2,1), here called 3iet words. Recently, a
characterization of substitution invariant 3iet words was
provided. We study the opposite question: what are the morphisms
fixing a 3iet word? We reveal a narrow connection of such
morphisms and morphisms fixing Sturmian words using the new notion
of amicability.
Any amicable pair ϕ, ψ of Sturmian morphisms enables a construction of a ternary morphism η which preserves the set of infinite words coding 3-interval exchange. We determine the number of amicable pairs with the same incidence matrix in SL±(2,ℕ) and we study incidence matrices associated with the corresponding ternary morphisms η.
Any amicable pair ϕ, ψ of Sturmian morphisms enables a
construction of a ternary morphism η which preserves the set of infinite
words coding 3-interval exchange. We determine the number of amicable pairs with the same
incidence matrix in SL±(2,ℕ) and we study incidence matrices
associated with the corresponding ternary morphisms η.
Let G be an undirected graph with n vertices. Assume that a robot is placed on a vertex and n − 2 obstacles are placed on the other vertices. A vertex on which neither a robot nor an obstacle is placed is said to have a hole. Consider a single player game in which a robot or obstacle can be moved to adjacent vertex if it has a hole. The objective is to take the robot to a fixed destination vertex using minimum number of moves. In general, it is not necessary that the robot will take a shortest path...
In this paper, we consider linear complementarity problems with positive definite matrices through a multi-agent network. We propose a distributed continuous-time algorithm and show its correctness and convergence. Moreover, with the help of Kalman-Yakubovich-Popov lemma and Lyapunov function, we prove its asymptotic convergence. We also present an alternative distributed algorithm in terms of an ordinary differential equation. Finally, we illustrate the effectiveness of our method by simulations....
This paper investigates a distributed solver for non-negative matrix factorization (NMF) over a multi-agent network. After reformulating the problem into the standard distributed optimization form, we design our distributed algorithm (DisNMF) based on the primal-dual method and in the form of multiplicative update rule. With the help of auxiliary functions, we provide monotonic convergence analysis. Furthermore, we show by computational complexity analysis and numerical examples that our distributed...
Multifractal analysis is known as a useful tool in signal analysis. However, the
methods are often used without methodological validation. In this study, we
present multidimensional models in order to validate multifractal analysis
methods.
We prove that the subsets of that are S-recognizable for all abstract numeration systems S are exactly the 1-recognizable sets. This generalizes a result of Lecomte and Rigo in the one-dimensional setting.
We prove that the subsets of that are S-recognizable for all abstract numeration systems S are exactly the 1-recognizable sets. This generalizes a result of Lecomte and Rigo in the one-dimensional setting.
Currently displaying 141 –
160 of
174