The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We investigate the intersection of two finitely generated submonoids
of the free monoid on a finite alphabet. To this purpose, we
consider automata that recognize such submonoids and we study the
product automata recognizing their intersection. By using automata
methods we obtain a new proof of a result of Karhumäki on the
characterization of the intersection of two submonoids of
rank two, in the case of prefix (or suffix) generators. In a more
general setting, for an arbitrary number of generators,...
Dans quelle mesure la régularité des chiffres d’un nombre réel dans une base entière, celle des quotients partiels du développement en fraction continuée d’un nombre réel, ou celle des coefficients d’une série formelle sont-elles liées à l’algébricité ou à la transcendance de ce réel ou de cette série formelle ? Nous proposons un survol de résultats récents dans le cas où la régularité évoquée ci-dessus est celle de suites automatiques, substitutives, ou sturmiennes.
In 1978, Courcelle asked for a complete set of axioms and rules for the equational theory of (discrete regular) words equipped with the operations of product, omega power and omega-op power. In this paper we find a simple set of equations and prove they are complete. Moreover, we show that the equational theory is decidable in polynomial time.
In 1978, Courcelle asked for a complete
set of axioms and rules for the equational
theory of (discrete regular) words equipped
with the operations of product, omega power and
omega-op power. In this paper we find a simple set of equations
and prove they are complete.
Moreover, we show that the equational theory is decidable in
polynomial time.
Currently displaying 21 –
29 of
29