The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 441 –
460 of
698
A multiphase generalization of the Monge–Kantorovich optimal transportation problem is addressed. Existence of optimal solutions is established. The optimality equations are related to classical Electrodynamics.
A multiphase generalization of the Monge–Kantorovich optimal
transportation problem is addressed.
Existence of optimal solutions is established.
The optimality equations are related to classical Electrodynamics.
This paper is concerned with a PDE-constrained optimization problem of induction heating, where the state equations consist of 3D time-dependent heat equations coupled with 3D time-harmonic eddy current equations. The control parameters are given by finite real numbers representing applied alternating voltages which enter the eddy current equations via impressed current. The optimization problem is to find optimal voltages so that, under certain constraints on the voltages and the temperature, a...
This paper is concerned with a PDE-constrained optimization problem of induction heating, where the state equations consist of 3D time-dependent heat equations coupled with 3D time-harmonic eddy current equations. The control parameters are given by finite real numbers representing applied alternating voltages which enter the eddy current equations via impressed current. The optimization problem is to find optimal voltages so that, under certain constraints on the voltages and the temperature, a...
We study the existence of spatial periodic solutions for nonlinear elliptic equations where is a continuous function, nondecreasing w.r.t. . We give necessary and sufficient conditions for the existence of periodic solutions. Some cases with nonincreasing functions are investigated as well. As an application we analyze the mathematical model of electron beam focusing system and we prove the existence of positive periodic solutions for the envelope equation. We present also numerical simulations....
We study the existence of spatial periodic solutions for nonlinear
elliptic equations
where g is a continuous function, nondecreasing w.r.t. u. We
give necessary and sufficient conditions for the existence of
periodic solutions. Some cases with nonincreasing functions g
are investigated as well. As an application we analyze the
mathematical model of electron beam focusing system and we prove
the existence of positive periodic solutions for the envelope
equation. We present also numerical simulations.
...
The electric potential u in a solute of electrolyte satisfies the equation
Δu(x) = f(u(x)), x ∈ Ω ⊂ ℝ³, .
One studies the existence of a solution of the problem and its properties.
Currently displaying 441 –
460 of
698