Periodic solutions to Maxwell equations in nonlinear media

Pavel Krejčí

Czechoslovak Mathematical Journal (1986)

  • Volume: 36, Issue: 2, page 238-258
  • ISSN: 0011-4642

How to cite

top

Krejčí, Pavel. "Periodic solutions to Maxwell equations in nonlinear media." Czechoslovak Mathematical Journal 36.2 (1986): 238-258. <http://eudml.org/doc/13578>.

@article{Krejčí1986,
author = {Krejčí, Pavel},
journal = {Czechoslovak Mathematical Journal},
keywords = {existence; classical time-periodic solutions; Maxwell equations; nonlinear media; hard implicit function theorem},
language = {eng},
number = {2},
pages = {238-258},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Periodic solutions to Maxwell equations in nonlinear media},
url = {http://eudml.org/doc/13578},
volume = {36},
year = {1986},
}

TY - JOUR
AU - Krejčí, Pavel
TI - Periodic solutions to Maxwell equations in nonlinear media
JO - Czechoslovak Mathematical Journal
PY - 1986
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 36
IS - 2
SP - 238
EP - 258
LA - eng
KW - existence; classical time-periodic solutions; Maxwell equations; nonlinear media; hard implicit function theorem
UR - http://eudml.org/doc/13578
ER -

References

top
  1. M. Altman, 10.1016/0362-546X(84)90089-0, Nonlin. Anal., Theory, Meth., Appl. 8 (1984), No. 5, pp. 457-499. (1984) MR0741601DOI10.1016/0362-546X(84)90089-0
  2. E. B. Bykhovsky, Solution to the mixed problem for Maxwell equations in case of ideally conductive boundary, Vest. Leningrad. Univ., ser. Mat., Mech., Astr. 13 (1957), pp. 50-66 (Russian). (1957) 
  3. W. Craig, A bifurcation theory for periodic solutions of nonlinear dissipative hyperbolic equations, Ann. Scuola Norm. Sup. Pisa, ser. IV, vol. X (1983), pp. 125-168. (1983) Zbl0518.35057MR0713113
  4. B. D. Craven M. Z. Nashed, 10.1016/0362-546X(82)90023-2, Nonlin. Anal., Theory, Meth., Appl. 6 (1982), pp. 375-387. (1982) MR0654813DOI10.1016/0362-546X(82)90023-2
  5. G. Duvaut J.-L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris 1972. (1972) MR0464857
  6. M. R. Hestenes, 10.1215/S0012-7094-41-00812-8, Duke Math. J. 8 (1941), pp. 183-192. (1941) Zbl0024.38602MR0003434DOI10.1215/S0012-7094-41-00812-8
  7. 17] L. Hörmander, 10.1002/cpa.3160330104, Arch. Rat. Mech. Anal. 62 (1976), pp. 1-52. (1976) MR0602181DOI10.1002/cpa.3160330104
  8. S. Klainerman, Global existence for nonlinear wave equations, Comm. Pure Appl. Math. 33 (1980), p. 43-101. (1980) Zbl0405.35056MR0544044
  9. P. Krejčí, Periodic vibrations of the electromagnetic field in ferromagnetic media, Thesis, Mathematical Institute of the Czechoslovak Academy of Sciences, Praha 1984 (Czech). (1984) 
  10. P. Krejčí, Hard implicit function theorem and small periodic solutions to partial differential equations, Comm. Math. Univ. Carolinae 25 (3), 1984, pp. 519-536. (1984) MR0775567
  11. O. А. Ladyzhenskaya V. А. Solonnikov, On the linearization principle and invariant manifolds for problems in magnetohydrodynamics. In "Boundary value problems of mathematical physics and related problems of function theory 7.", Zap. Nautch. Sem. LOMI 38 (1973), pp. 46-93 (Russian). (1973) MR0377310
  12. O. A. Ladyzhenskaya N. N. Uraltseva, 10.2977/prims/1195189813, "Nauka", Moscow 1973 (Russian). (1973) MR0509265DOI10.2977/prims/1195189813
  13. A. Matsumura, 10.1007/BF01765154, Publ. R.I.M.S., Kyotov Univ., 13 (1977), pp. 349-379. (1977) Zbl0371.35030MR0470507DOI10.1007/BF01765154
  14. A. Milani, 10.1073/pnas.47.11.1824, Ann. Mat. Рurа Appl. (4) 131 (1982), pp. 233 - 254. (1982) Zbl0498.35077MR0681565DOI10.1073/pnas.47.11.1824
  15. J. Moser, A new technique for the construction of solutions of nonlinear differential equations, Proc. Nat. Acad. Sci. 47 (1961), pp. 1824-1831. (1961) Zbl0104.30503MR0132859
  16. J. Moser, 10.2307/1969989, Ann. Scuola Norm. Sup. Pisa 20-3 (1966), pp. 265-315 and 499-535. (1966) Zbl0174.47801DOI10.2307/1969989
  17. J. Nash, The embedding problem for Riemannian manifolds, Ann. of Math. 63 (1956), pp. 20-63. (1956) MR0075639
  18. L. Nirenberg, 10.3792/pjaa.58.391, Ann. Scuola Norm. Sup. Pisa, 13 (1959), pp. 115-162. (1959) Zbl0088.07601MR0109940DOI10.3792/pjaa.58.391
  19. Y. Niwa, Existence of global solutions for nonlinear wave equations, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), pp. 391-394. (1982) Zbl0548.35078MR0694942
  20. H. Petzeltová, 10.1007/BF02925655, Czech. Math. J. 33 (1983), pp. 427-434. (1983) Zbl0547.35081MR0718925DOI10.1007/BF02925655
  21. G. Prouse, 10.1002/cpa.3160220103, Rend. Sem. Mat. Fis. Milano 44 (1974), pp. 95-118. (1974) MR0411370DOI10.1002/cpa.3160220103
  22. P. H. Rabinowitz, 10.1002/cpa.3160130311, Comm. Pure Appl. Math. 22 (1969), pp. 15-39. (1969) Zbl0157.17301MR0236504DOI10.1002/cpa.3160130311
  23. J. T. Schwartz, 10.1016/0022-0396(82)90102-4, Comm. Pure Appl. Math. 13 (1960), pp. 509-530. (1960) Zbl0178.51002MR0114144DOI10.1016/0022-0396(82)90102-4
  24. J. Shatah, Global existence of small solutions to nonlinear evolution equations, J. Diff. Eq. (46) (1982), pp. 409-425. (1982) Zbl0518.35046MR0681231
  25. Y. Shibata, 10.21099/tkbjm/1496159662, Funkc. Ekv. 25 (1982), pp. 303-345. (1982) MR0707564DOI10.21099/tkbjm/1496159662
  26. Y. Shibata, On the global existence of classical solutions of second-order fully nonlinear hyperbolic equations with first-order dissipation in the exterior domain, Tsukuba J. Math. 7 (1983), pp. 1-68. (1983) Zbl0524.35071MR0703667
  27. J. A. Stratton, Electromagnetic theory, Mc. Graw - Hill Book Co., Inc., New York 1941. (1941) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.