The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
        
      
        
	
	
        
    
		
			
			
                                             
                
                    
                    
                
                
    			
    				
                    
    	            
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
Introduction: This article will present just one example of a general construction known as the Bernstein-Gelfand-Gelfand (BGG) resolution. It was the motivating example from two lectures on the BGG resolution given at the 19th Czech Winter School on Geometry and Physics held in Srní in January 1999. This article may be seen as a technical example to go with a more elementary introduction which will appear elsewhere [M. Eastwood, Notices Am. Math. Soc. 46, No. 11, 1368-1376 (1999)]. In fact, there...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
An -ary Poisson bracket (or generalized Poisson bracket) on the manifold  is a skew-symmetric -linear bracket  of functions which is a derivation in each argument and satisfies the generalized Jacobi identity of order , i.e., 
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
Let  be a field. The generalized Leibniz rule for higher derivations suggests the definition of a coalgebra  for any positive integer . This is spanned over  by , and has comultiplication  and counit  defined by  and  (Kronecker’s delta) for any . This note presents a representation of the coalgebra  by using smooth spaces and a procedure of microlocalization. The author gives an interpretation of this result following the principles of the quantum theory of geometric spaces.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
Summary: In this paper the isometries of the dual space were investigated. The dual structural equations of a Killing tensor of order two were found. The general results are applied to the case of the flat space.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
This paper gives an exposition of algebraic K-theory, which studies functors ,  an integer. Classically  introduced by Bass in the mid 60’s (based on ideas of Grothendieck and others) and  introduced by Milnor [Introduction to algebraic K-theory, Annals of Math. Studies, 72, Princeton University Press, 1971: Zbl 0237.18005]. These functors are defined and applications to topological K-theory (Swan), number theory, topology and geometry (the Wall finiteness obstruction to a CW-complex being finite,...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
A certain family of homogeneous spaces is investigated. Basic invariant operators for each of these structures are presented and some analogies to Levi-Civita connections of Riemannian geometry are pointed out.
    			                    
    			                 
    		                
    		                
    		            
    			    			
    			 
 
    			
    				Currently displaying 1 – 
                                        9 of 
                                        9