Displaying 2101 – 2120 of 2284

Showing per page

Velocity and Entropy of Motion in Periodic Potentials

Andreas Knauf (1996/1997)

Séminaire Équations aux dérivées partielles

This is a report on recent joint work with J. Asch, and with T. Hudetz and F. Benatti.We consider classical, quantum and semiclassical motion in periodic potentials and prove various results on the distribution of asymptotic velocities.The Kolmogorov-Sinai entropy and its quantum generalization, the Connes-Narnhofer-Thirring entropy, of the single particle and of a gas of noninteracting particles are related.

Volume and area renormalizations for conformally compact Einstein metrics

Graham, Robin C. (2000)

Proceedings of the 19th Winter School "Geometry and Physics"

Let X be the interior of a compact manifold X ¯ of dimension n + 1 with boundary M = X , and g + be a conformally compact metric on X , namely g ¯ r 2 g + extends continuously (or with some degree of smoothness) as a metric to X , where r denotes a defining function for M , i.e. r > 0 on X and r = 0 , d r 0 on M . The restrction of g ¯ to T M rescales upon changing r , so defines invariantly a conformal class of metrics on M , which is called the conformal infinity of g + . In the present paper, the author considers conformally compact metrics...

Vortex rings for the Gross-Pitaevskii equation

Fabrice Bethuel, G. Orlandi, Didier Smets (2004)

Journal of the European Mathematical Society

We provide a mathematical proof of the existence of traveling vortex rings solutions to the Gross–Pitaevskii (GP) equation in dimension N 3 . We also extend the asymptotic analysis of the free field Ginzburg–Landau equation to a larger class of equations, including the Ginzburg–Landau equation for superconductivity as well as the traveling wave equation for GP. In particular we rigorously derive a curvature equation for the concentration set (i.e. line vortices if N = 3 ).

Vorticity dynamics and turbulence models for large-Eddy simulations

Georges-Henri Cottet, Delia Jiroveanu, Bertrand Michaux (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider in this paper the problem of finding appropriate models for Large Eddy Simulations of turbulent incompressible flows from a mathematical point of view. The Smagorinsky model is analyzed and the vorticity formulation of the Navier–Stokes equations is used to explore more efficient subgrid-scale models as minimal regularizations of these equations. Two classes of variants of the Smagorinsky model emerge from this approach: a model based on anisotropic turbulent viscosity and a selective...

Vorticity dynamics and turbulence models for Large-Eddy Simulations

Georges-Henri Cottet, Delia Jiroveanu, Bertrand Michaux (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider in this paper the problem of finding appropriate models for Large Eddy Simulations of turbulent incompressible flows from a mathematical point of view. The Smagorinsky model is analyzed and the vorticity formulation of the Navier–Stokes equations is used to explore more efficient subgrid-scale models as minimal regularizations of these equations. Two classes of variants of the Smagorinsky model emerge from this approach: a model based on anisotropic turbulent viscosity and...

Ward identities from recursion formulas for correlation functions in conformal field theory

Alexander Zuevsky (2015)

Archivum Mathematicum

A conformal block formulation for the Zhu recursion procedure in conformal field theory which allows to find n -point functions in terms of the lower correlations functions is introduced. Then the Zhu reduction operators acting on a tensor product of VOA modules are defined. By means of these operators we show that the Zhu reduction procedure generates explicit forms of Ward identities for conformal blocks of vertex operator algebras. Explicit examples of Ward identities for the Heisenberg and free...

Wave Operators for Defocusing Matrix Zakharov-Shabat Systems with Pnonvanishing at Infinity

Demontis, Francesco, der Mee, Cornelis van (2010)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary: 34L25; secondary: 47A40, 81Q10.In this article we prove that the wave operators describing the direct scattering of the defocusing matrix Zakharov-Shabat system with potentials having distinct nonzero values with the same modulus at ± ∞ exist, are asymptotically complete, and lead to a unitary scattering operator. We also prove that the free Hamiltonian operator is absolutely continuous.

Weak c*-Hopf algebras: the coassociative symmetry of non-integral dimensions

Gabriella Böhm, Kornél Szlachányi (1997)

Banach Center Publications

By allowing the coproduct to be non-unital and weakening the counit and antipode axioms of a C*-Hopf algebra too, we obtain a selfdual set of axioms describing a coassociative quantum group, that we call a weak C*-Hopf algebra, which is sufficiently general to describe the symmetries of essentially arbitrary fusion rules. It is the same structure that can be obtained by replacing the multiplicative unitary of Baaj and Skandalis with a partial isometry. The algebraic properties, the existence of...

Weak interaction limit for nuclear matter and the time-dependent Hartree-Fock equation

Bernard Ducomet (2010)

Applications of Mathematics

We consider an effective model of nuclear matter including spin and isospin degrees of freedom, described by an N -body Hamiltonian with suitably renormalized two-body and three-body interaction potentials. We show that the corresponding mean-field theory (the time-dependent Hartree-Fock approximation) is “exact” as N tends to infinity.

Currently displaying 2101 – 2120 of 2284