Vertex algebras and algebraic curves

Edward Frenkel

Séminaire Bourbaki (1999-2000)

  • Volume: 42, page 299-339
  • ISSN: 0303-1179

How to cite

top

Frenkel, Edward. "Vertex algebras and algebraic curves." Séminaire Bourbaki 42 (1999-2000): 299-339. <http://eudml.org/doc/110277>.

@article{Frenkel1999-2000,
author = {Frenkel, Edward},
journal = {Séminaire Bourbaki},
keywords = {vertex algebras; Virasoro algebra; conformal field theory; moduli space of curves; chiral algebras},
language = {eng},
pages = {299-339},
publisher = {Société Mathématique de France},
title = {Vertex algebras and algebraic curves},
url = {http://eudml.org/doc/110277},
volume = {42},
year = {1999-2000},
}

TY - JOUR
AU - Frenkel, Edward
TI - Vertex algebras and algebraic curves
JO - Séminaire Bourbaki
PY - 1999-2000
PB - Société Mathématique de France
VL - 42
SP - 299
EP - 339
LA - eng
KW - vertex algebras; Virasoro algebra; conformal field theory; moduli space of curves; chiral algebras
UR - http://eudml.org/doc/110277
ER -

References

top
  1. [ADKP] E. Arbarello, C. De Concini, V. Kac and C. Procesi - Moduli spaces of curves and representation theory, Comm. Math. Phys.117 (1988) 1-36. Zbl0647.17010MR946992
  2. [BL] A. Beauville and Y. Laszlo - Conformal blocks and generalized theta functions, Comm. Math. Phys.164 (1994) 385-419. Zbl0815.14015MR1289330
  3. [BB] A. Beilinson and J. Bernstein - A Proof of Jantzen Conjectures, Advances in Soviet Mathematics16, Part 1, pp. 1-50, AMS1993. Zbl0790.22007MR1237825
  4. [BD1] A. Beilinson and V. Drinfeld - Affine Kac-Moody algebras and polydifferentials, Int. Math. Res. Notices1 (1994) 1-11. Zbl0830.17013MR1255247
  5. [BD2] A. Beilinson and V. Drinfeld - Quantization of Hitchin's Integrable System and Hecke eigensheaves. Preprint. 
  6. [BD3] A. Beilinson and V. Drinfeld - Chiral Algebras. Preprint. MR2058353
  7. [BFM] A. Beilinson, B. Feigin and B. Mazur - Introduction to Algebraic Field Theory on Curves. Preprint. 
  8. [BG] A. Beilinson and V. Ginzburg - Infcnitesimal structure of moduli spaces of G-bundles, Duke Math. J. IMRN4 (1992) 63-74. Zbl0763.32011MR1159447
  9. [BS] A. Beilinson and V. Schechtman - Determinant bundles and Virasoro algebras, Comm. Math. Phys.118 (1988) 651-701. Zbl0665.17010MR962493
  10. [BPZ] A. Belavin, A. Polyakov and A. Zamolodchikov - Infinite conformal symmetries in two-dimensional quantum field theory, Nucl. Phys. B241 (1984) 333-380. Zbl0661.17013MR757857
  11. [BF] D. Ben-Zvi and E. Frenkel - Vertex algebras and algebraic curves, book in preparation. Zbl0981.17022
  12. [B1] R. Borcherds - Vertex algebras, Kac-Moody algebras and the monster. Proc. Nat. Acad. Sci. USA83 (1986) 3068-3071. Zbl0613.17012MR843307
  13. [B2] R. Borcherds - Monstrous moonshine and monstrous Lie superalgebras, Invent. Math.109 (1992) 405-444. Zbl0799.17014MR1172696
  14. [B3] R. Borcherds - Quantum vertex algebras, Preprint math.QA/9903038. MR1865087
  15. [Bo1] L. Borisov - Introduction to the vertex algebra approach to mirror symmetry, Preprint math. AG/9912195. 
  16. [BoL] L. Borisov and A. Libgober - Elliptic genera of toric varieties and applications to mirror symmetry, Invent. Math.140 (2000) 453-485. Zbl0958.14033MR1757003
  17. [dBT] J. de Boer and T. Tjin - The relation between quantum W-algebras and Lie algebras, Comm. Math. Phys.160 (1994) 317-332. Zbl0796.17027MR1262200
  18. [dFMS] P. di Francesco, P. Mathieu and D. Senechal - Conformal Field Theory. Springer-Verlag1997. Zbl0869.53052MR1424041
  19. [D1] C. Dong - Vertex algebras associated with even lattices, J. Algebra161 (1993) 245-265. Zbl0807.17022MR1245855
  20. [D2] C. Dong - Representations of the moonshine module vertex operator algebra, Contemp. Math.175 (1994) 27-36. Zbl0808.17013MR1302010
  21. [DLM] C. Dong, H. Li and G. Mason - Twisted representations of vertex operator algebras, Math. Ann.310 (1998) 571-600. Zbl0890.17029MR1615132
  22. [DS] V. Drinfeld and V. Sokolov - Lie algebras and KdV type equations, J. Sov. Math.30 (1985) 1975-2036. Zbl0578.58040
  23. [EK] P. Etingof and D. Kazhdan - Quantization of Lie bialgebras. V, Preprint math.QA/9808121. Zbl0948.17008
  24. [Fa] G. Faltings - A proof of the Verlinde formula, J. Alg. Geom.3 (1994) 347-374. Zbl0809.14009MR1257326
  25. [FL] V. Fateev and S. Lukyanov - The models of two-dimensional conformal quantum field theory with Zn symmetry, Int. J. Mod. Phys. A3 (1988), 507- 520. MR932661
  26. [Fe1] B. Feigin - The semi-infinite cohomology of Kac-Moody and Virasoro Lie algebras, Russ. Math. Surv.39, No. 2 (1984) 155-156. Zbl0574.17008MR740035
  27. [FF1] B. Feigin and E. Frenkel - A family of representations of affine Lie algebras, Russ. Math. Surv.43, No. 5 (1988) 221-222. Zbl0668.17015MR971497
  28. [FF2] B. Feigin and E. Frenkel - Affine Kac-Moody algebras and semi-infinite flag manifolds, Comm. Math. Phys.128 (1990) 161-189. Zbl0722.17019MR1042449
  29. [FF3] B. Feigin and E. Frenkel - Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras, Int. Jour. Mod. Phys. A7, Suppl. 1A (1992) 197-215. Zbl0925.17022MR1187549
  30. [FF4] B. Feigin and E. Frenkel - Integrals of Motion and Quantum Groups, in Lect. Notes in Math.1620, pp. 349-418, Springer-Verlag1996. Zbl0885.58034MR1397275
  31. [FS] B. Feigin and A. Stoyanovsky - Realization of a modular functor in the space of differentials, and geometric approximation of the moduli space of G-bundles, Funct. Anal. Appl.28 (1994) 257-275. Zbl0857.17021MR1318339
  32. [FKW] E. Frenkel, V. Kac and M. Wakimoto - Characters and fusion rules for W-algebras via quantized Drinfeld-Sokolov reduction, Comm. Math. Phys.147 (1992), 295-328. Zbl0768.17008MR1174415
  33. [FKRW] E. Frenkel, V. Kac, A. Radul and W. Wang - W1+∞ and WN with central charge N, Comm. Math. Phys.170 (1995) 337-357. Zbl0838.17028
  34. [FR] E. Frenkel and N. Reshetikhin - Towards deformed chiral algebras, Preprint q-alg/9706023. 
  35. [FK] I. Frenkel and V. Kac - Basic representations of affine Lie algebras and dual resonance models, Invent. Math.62 (1980) 23-66. Zbl0493.17010MR595581
  36. [FGZ] I. Frenkel, H. Garland and G. Zuckerman - Semi-infinite cohomology and string theory, Proc. Nat. Acad. Sci. U.S. A.83 (1986) 8442-8446. Zbl0607.17007MR865483
  37. [FLM] I. Frenkel, J. Lepowsky and A. Meurman - Vertex Operator Algebras and the Monster. Academic Press1988. Zbl0674.17001MR996026
  38. [FHL] I. Frenkel, Y.-Z. Huang and J. Lepowsky - On axiomatic approaches to vertex operator algebras and modules. Mem. Amer. Math. Soc.104 (1993), no. 494. Zbl0789.17022MR1142494
  39. [FZ] I. Frenkel and Y. Zhu - Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J.60 (1992) 123-168. Zbl0848.17032MR1159433
  40. [FrS] D. Friedan and S. Shenker - The analytic geometry of two-dirnensional conformal field theory, Nucl. Phys. B281 (1987) 509-545. MR869564
  41. [G] D. Gaitsgory - Notes on 2D Conformal Field Theory and String Theory, in Quantum fields and strings: a course for mathematicians, Vol. 2, pp. 1017-1089, AMS1999. Zbl1170.81429MR1701613
  42. [Ga] K. Gawędzki - Conformal field theory, Sém. Bourbaki, Exp. 704, Astérisque177-178 (1989) 95-126. Zbl0699.53085MR1040570
  43. [GKF] I.M. Gelfand, D.A. Kazhdan and D.B. Fuchs - The actions of infinite-dimensional Lie algebras, Funct. Anal. Appl.6 (1972) 9-13. Zbl0267.18023MR333080
  44. [Gi] V. Ginzburg - Resolution of diagonals and moduli spaces, in The moduli space of curves, Progress in Math.129, pp. 231-266, Birkhäuser1995. Zbl0841.14006MR1363059
  45. [Go] P. Goddard - Meromorphic conformal field theory, in Infinite-dimensional Lie algebras and groups, V. Kac (ed.), pp. 556-587, World Scientific1989. Zbl0742.17027MR1026966
  46. [GKO] P. Goddard, A. Kent and D. Olive - Unitary representations of the Virasoro and super-Virasoro algebras, Comm. Math. Phys.103 (1986) 105- 119. Zbl0588.17014MR826859
  47. [GMS] V. Gorbounov, F. Malikov and V. Schechtman - Gerbes of chiral differential operators. I, math.AG/9906116; II, math.AG/0003170. 
  48. [Gu] R. Gunning - Lectures on Riemann Surfaces. Princeton University Press1966. Zbl0175.36801MR207977
  49. [Hu] Y.-Z. Huang - Two-dimensional conformal geometry and vertex operator algebras. Progress in Math.148. Birkhäuser1997. Zbl0884.17021MR1448404
  50. [HL] Y.-Z. Huang and J. Lepowsky - On the D-module and formal variable approaches to vertex algebras, in Topics in geometry, pp. 175-202, Birkhäuser1996. Zbl0871.17023MR1390314
  51. [K1] V. Kac - Infinite-dimensional Lie algebras, Third Edition. Cambridge University Press1990. MR1104219
  52. [K2] V. Kac - Vertex Algebras for Beginners, Second Edition. AMS1998. Zbl0924.17023MR1651389
  53. [K3] V. Kac - Formal distribution algebras and conformal algebras, in Proc. XXIIth ICMP, Brisbane, 1994, pp. 80-96, International Press1999. MR1697266
  54. [KL] D. Kazhdan and G. Lusztig - Tensor structures arising from affine Lie algebras IV, J. of AMS7 (1993) 383-453. Zbl0802.17008MR1239507
  55. [Ko] M. Kontsevich - The Virasoro algebra and Teichmüller spaces, Funct. Anal. Appl.21 (1987), no. 2, 156-157. Zbl0647.58012MR902301
  56. [KNR] S. Kumar, M.S. Narasimhan and A. Ramanathan - Infinite Grassmannians and moduli spaces of G-bundles, Math. Ann.300 (1993) 395-423. Zbl0803.14012MR1289830
  57. [LW] J. Lepowsky and R.L. Wilson - Construction of the affine Lie algebra A(1)1, Comm. Math. Phys.62 (1978) 43-53. Zbl0388.17006MR573075
  58. [Li] H. Li - Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Alg.109 (1996) 143-195. Zbl0854.17035MR1387738
  59. [LZ] B. Lian and G. ZUCKERMAN - New perspectives on the BRST-algebraic structure of string theory, Comm. Math. Phys.154 (1993) 613-646. Zbl0780.17029MR1224094
  60. [MSV] A. Malikov, V. Schechtman and A. Vaintrob - Chiral deRham complex, Comm. Math. Phys.204 (1999) 439-473. Zbl0952.14013MR1704283
  61. [SV2] V. Schechtman and A. Varchenko - Quantum groups and homology of local systems, in Algebraic Geometry and Analytic Geometry, M. Kashiwara and T. Miwa (eds.), pp. 182-191, Springer-Verlag1991. Zbl0760.17014MR1260946
  62. [Se] G. Segal - The Definition of Conformal Field Theory, unpublished manuscript. 
  63. [So] C. Sorger - La formule de Verlinde, Sém. Bourbaki, Exp. 793, Astérisque237 (1996) 87-114. Zbl0878.17024MR1423621
  64. [TK] A. Tsuchiya and Y. Kanie - Vertex operators in conformal field theory on P1 and monodromy representations of the braid group, in Adv. Stud. Pure Math16, pp. 297-372, Academic Press1988. Zbl0661.17021MR972998
  65. [TUY] A. Tsuchiya, K. Ueno and Y. Yamada - Conformal field theory on universal family of stable curves with gauge symmetries, Adv. Stud. Pure Math.19, pp. 459-566, Academic Press1989. Zbl0696.17010MR1048605
  66. [Wa] M. Wakimoto - Fock representations of affine Lie algebra A(1)1, Comm. Math. Phys.104 (1986) 605-609. Zbl0587.17009MR841673
  67. [Wa] W. Wang - Rationality of Virasoro vertex operator algebras, Duke Math. J. IMRN7 (1993) 197-211. Zbl0791.17029MR1230296
  68. [Wi] E. Witten - Quantum field theory, Grassmannians and algebraic curves, Comm. Math. Phys113 (1988) 529-600. Zbl0636.22012MR923632
  69. [Z1] Y. Zhu - Modular invariance of characters of vertex operator algebras, J. AMS9 (1996) 237-302. Zbl0854.17034MR1317233
  70. [Z2] Y. Zhu - Global vertex operators on Riemann surfaces, Comm. Math. Phys.165 (1994) 485-531. Zbl0819.17019MR1301621

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.