The algebraic formulation of the axioms quantum field theory
The author reviews the theory of approximate infinitesimal symmetries of partial differential equations. Based on this and on Ibragimov's result on the general symmetries of the vacuum Einstein equation, he proposes a method to calculate approximate symmetries of the non-vacuum Einstein equation: the energy-momentum tensor is treated like a perturbation.
Dirac-harmonic maps are a mathematical version (with commuting variables only) of the solutions of the field equations of the non-linear supersymmetric sigma model of quantum field theory. We explain this structure, including the appropriate boundary conditions, in a geometric framework. The main results of our paper are concerned with the analytic regularity theory of such Dirac-harmonic maps. We study Dirac-harmonic maps from a Riemannian surface to an arbitrary compact Riemannian manifold. We...