Previous Page 4

Displaying 61 – 74 of 74

Showing per page

Existence of solutions for a model of self-gravitating particles with external potential

Andrzej Raczyński (2004)

Banach Center Publications

We study the existence of solutions to a nonlinear parabolic equation describing the temporal evolution of a cloud of self-gravitating particles with a given external potential. The initial data are in spaces of (generalized) pseudomeasures. We prove existence of local and global-in-time solutions, and also a kind of stability of global solutions.

Existence, uniqueness and convergence of a particle approximation for the Adaptive Biasing Force process

Benjamin Jourdain, Tony Lelièvre, Raphaël Roux (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study a free energy computation procedure, introduced in [Darve and Pohorille, J. Chem. Phys.115 (2001) 9169–9183; Hénin and Chipot, J. Chem. Phys.121 (2004) 2904–2914], which relies on the long-time behavior of a nonlinear stochastic differential equation. This nonlinearity comes from a conditional expectation computed with respect to one coordinate of the solution. The long-time convergence of the solutions to this equation has been proved in [Lelièvre et al., Nonlinearity21 (2008) 1155–1181],...

Existence, uniqueness and stability for spatially inhomogeneous Becker-Döring equations with diffusion and convection terms

P. B. Dubovski, S.-Y. Ha (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

We consider the spatially inhomogeneous Bekker-Döring infinite-dimensional kinetic system describing the evolution of coagulating and fragmenting particles under the influence of convection and diffusion. The simultaneous consideration of opposite coagulating and fragmenting processes causes many additional difficulties in the investigation of spatially inhomogeneous problems, where the space variable changes differently for distinct particle sizes. To overcome these difficulties, we use a modified...

Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials.

Céline Baranger, Clément Mouhot (2005)

Revista Matemática Iberoamericana

This paper deals with explicit spectral gap estimates for the linearized Boltzmann operator with hard potentials (and hard spheres). We prove that it can be reduced to the Maxwellian case, for which explicit estimates are already known. Such a method is constructive, does not rely on Weyl's Theorem and thus does not require Grad's splitting. The more physical idea of the proof is to use geometrical properties of the whole collision operator. In a second part, we use the fact that the Landau operator...

Currently displaying 61 – 74 of 74

Previous Page 4