The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 121 –
140 of
1377
We propose and study semidiscrete and fully discrete finite element schemes based on appropriate relaxation models for systems of Hyperbolic Conservation Laws. These schemes are using piecewise polynomials of arbitrary degree and their consistency error is of high order. The methods are combined with an adaptive strategy that yields fine mesh in shock regions and coarser mesh in the smooth parts of the solution. The computational performance of these methods is demonstrated by considering scalar...
We propose and study semidiscrete and fully discrete
finite element schemes based on appropriate relaxation models for
systems of Hyperbolic Conservation Laws.
These schemes are using piecewise polynomials of arbitrary degree and
their consistency error is of high order.
The methods are combined with an adaptive strategy that yields
fine mesh in shock regions and coarser mesh in the smooth parts of the
solution.
The computational performance of these methods is demonstrated by considering
scalar...
The parabolic Anderson model is the Cauchy problem for the heat equation with a random potential. We consider this model in a setting which is continuous in time and discrete in space, and focus on time-constant, independent and identically distributed potentials with polynomial tails at infinity. We are concerned with the long-term temporal dynamics of this system. Our main result is that the periods, in which the profile of the solutions remains nearly constant, are increasing linearly over time,...
We consider transient one-dimensional random walks in a random environment with zero asymptotic speed. An aging phenomenon involving the generalized Arcsine law is proved using the localization of the walk at the foot of “valleys“ of height . In the quenched setting, we also sharply estimate the distribution of the walk at time .
We consider a multidimensional random walk in a product random environment with bounded steps, transience in some spatial direction, and high enough moments on the regeneration time. We prove an invariance principle, or functional central limit theorem, under almost every environment for the diffusively scaled centered walk. The main point behind the invariance principle is that the quenched mean of the walk behaves subdiffusively.
We extend the convergence method introduced in our works [8–10] for almost sure global well-posedness of Gibbs measure evolutions of the nonlinear Schrödinger (NLS) and nonlinear wave (NLW) equations on the unit ball in to the case of the three dimensional NLS. This is the first probabilistic global well-posedness result for NLS with supercritical data on the unit ball in . The initial data is taken as a Gaussian random process lying in the support of the Gibbs measure associated to the equation,...
We consider multiscale systems for which only a fine-scale model describing the evolution of individuals (atoms, molecules, bacteria, agents) is given, while we are interested in the evolution of the population density on coarse space and time scales. Typically, this evolution is described by a coarse Fokker-Planck equation. In this paper, we consider a numerical procedure to compute the solution of this Fokker-Planck equation directly on the coarse level, based on the estimation of the unknown...
We consider multiscale systems for which only a fine-scale
model describing the evolution of individuals (atoms,
molecules, bacteria, agents) is given, while we are interested in the
evolution of the population density on coarse space and time
scales. Typically, this evolution is described by a coarse
Fokker-Planck equation.
In this paper, we consider a numerical procedure to compute the solution of
this Fokker-Planck equation directly on the coarse level, based on the
estimation of the unknown...
The analysis of dissipative transport equations within the framework of open quantum systems with Fokker-Planck-type scattering is carried out from the perspective of a Wigner function approach. In particular, the well-posedness of the self-consistent whole-space problem in 3D is analyzed: existence of solutions, uniqueness and asymptotic behavior in time, where we adopt the viewpoint of mild solutions in this paper. Also, the admissibility of a density matrix formulation in Lindblad form with Fokker-Planck...
The atomistic to continuum interface for quasicontinuum energies
exhibits nonzero forces under uniform strain that have been
called ghost forces.
In this paper,
we prove for a linearization of a one-dimensional quasicontinuum energy
around a uniform strain
that the effect of the ghost forces on the displacement
nearly cancels and has a small effect on the error away from the interface.
We give optimal order error estimates
that show that the quasicontinuum displacement
converges to the atomistic...
Currently displaying 121 –
140 of
1377