The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We present a Branch-and-Cut algorithm where the volume algorithm is applied
instead of the traditionally used dual simplex algorithm to the linear
programming relaxations in the root node of the search tree. This means that
we use fast approximate solutions to these linear programs instead of exact
but slower solutions. We present computational results with the Steiner tree
and Max-Cut problems. We show evidence that one can solve these problems
much faster with the volume algorithm based...
This paper deals with the parallel-machine scheduling problem with the aim of minimizing
the total (weighted) tardiness under the assumption of different release dates. This
problem has been proven to be NP-hard. We introduce some new lower and upper bounds based
on different approaches. We propose a branch-and-bound algorithm to solve the weighted and
unweighted total tardiness. Computational experiments were performed on a large set of
instances...
This paper deals with the parallel-machine scheduling problem with the aim of minimizing
the total (weighted) tardiness under the assumption of different release dates. This
problem has been proven to be NP-hard. We introduce some new lower and upper bounds based
on different approaches. We propose a branch-and-bound algorithm to solve the weighted and
unweighted total tardiness. Computational experiments were performed on a large set of
instances...
Currently displaying 41 –
60 of
63