Displaying 41 – 60 of 63

Showing per page

Branch and Cut based on the volume algorithm: Steiner trees in graphs and Max-cut

Francisco Barahona, László Ladányi (2006)

RAIRO - Operations Research

We present a Branch-and-Cut algorithm where the volume algorithm is applied instead of the traditionally used dual simplex algorithm to the linear programming relaxations in the root node of the search tree. This means that we use fast approximate solutions to these linear programs instead of exact but slower solutions. We present computational results with the Steiner tree and Max-Cut problems. We show evidence that one can solve these problems much faster with the volume algorithm based...

Branch-and-bound algorithm for total weighted tardiness minimization on parallel machines under release dates assumptions

Imed Kacem, Nizar Souayah, Mohamed Haouari (2012)

RAIRO - Operations Research

This paper deals with the parallel-machine scheduling problem with the aim of minimizing the total (weighted) tardiness under the assumption of different release dates. This problem has been proven to be NP-hard. We introduce some new lower and upper bounds based on different approaches. We propose a branch-and-bound algorithm to solve the weighted and unweighted total tardiness. Computational experiments were performed on a large set of instances...

Branch-and-bound algorithm for total weighted tardiness minimization on parallel machines under release dates assumptions

Imed Kacem, Nizar Souayah, Mohamed Haouari (2012)

RAIRO - Operations Research

This paper deals with the parallel-machine scheduling problem with the aim of minimizing the total (weighted) tardiness under the assumption of different release dates. This problem has been proven to be NP-hard. We introduce some new lower and upper bounds based on different approaches. We propose a branch-and-bound algorithm to solve the weighted and unweighted total tardiness. Computational experiments were performed on a large set of instances...

Currently displaying 41 – 60 of 63