The search session has expired. Please query the service again.
Displaying 81 –
100 of
101
La semiconcavità è una nozione che generalizza quella di concavità conservandone la maggior parte delle proprietà ma permettendo di ampliarne le applicazioni. Questa è una rassegna dei punti più salienti della teoria delle funzioni semiconcave, con particolare riguardo allo studio dei loro insiemi singolari. Come applicazione, si discuterà una formula di rappresentazione per la soluzione di un modello dinamico per la materia granulare.
Set covering problems are in great use these days, these problems are applied in many disciplines such as crew scheduling problems, location problems, testing of VLSI circuits, artificial intelligence etc. In this paper α-acceptable optimal solution is given for the fuzzy linear fractional set covering problem where fuzziness involved in the objective function. At first the fuzzy linear fractional problem is being converted in to crisp parametric linear fractional set covering problem then a linearization...
This paper shows how the simulated annealing (SA) algorithm provides a simple tool for solving fuzzy optimization problems. Often, the issue is not so much how to fuzzify or remove the conceptual imprecision, but which tools enable simple solutions for these intrinsically uncertain problems. A well-known linear programming example is used to discuss the suitability of the SA algorithm for solving fuzzy optimization problems.
In this paper, a solution procedure is proposed to solve fuzzy linear fractional programming (FLFP) problem where cost of the objective function, the resources and the technological coefficients are triangular fuzzy numbers. Here, the FLFP problem is transformed into an equivalent deterministic multi-objective linear fractional programming (MOLFP) problem. By using Fuzzy Mathematical programming approach transformed MOLFP problem is reduced single objective linear programming (LP) problem. The proposed...
Currently displaying 81 –
100 of
101