Extension of stochastic dominance theory to random variables
In this paper, we develop some stochastic dominance theorems for the location and scale family and linear combinations of random variables and for risk lovers as well as risk averters that extend results in Hadar and Russell (1971) and Tesfatsion (1976). The results are discussed and applied to decision-making.
We prove that under some topological assumptions (e.g. if M has nonempty interior in X), a convex cone M in a linear topological space X is a linear subspace if and only if each convex functional on M has a convex extension on the whole space X.