Displaying 1221 – 1240 of 1943

Showing per page

On the open-open game

Peg Daniels, Kenneth Kunen, Haoxuan Zhou (1994)

Fundamenta Mathematicae

We modify a game due to Berner and Juhász to get what we call “the open-open game (of length ω)”: a round consists of player I choosing a nonempty open subset of a space X and II choosing a nonempty open subset of I’s choice; I wins if the union of II’s open sets is dense in X, otherwise II wins. This game is of interest for ccc spaces. It can be translated into a game on partial orders (trees and Boolean algebras, for example). We present basic results and various conditions under which I or II...

On the optimal reinsurance problem

Swen Kiesel, Ludger Rüschendorf (2013)

Applicationes Mathematicae

In this paper we consider the optimal reinsurance problem in endogenous form with respect to general convex risk measures ϱ and pricing rules π. By means of a subdifferential formula for compositions in Banach spaces we first characterize optimal reinsurance contracts in the case of one insurance taker and one insurer. In the second step we generalize the characterization to the case of several insurance takers. As a consequence we obtain a result saying that cooperation brings less risk compared...

On the possibilities of fuzzification of the solution in fuzzy cooperative games.

Milan Mares (2002)

Mathware and Soft Computing

Some possibilities of fuzzification of the von Neumann-Morgenstern solution of cooperative games with transferable utility (TU games) are briefly investigated. The fuzzification based on the transformation of individual fuzzy TU game into a fuzzy class of (deterministic) TU games with their own specific solutions is discussed.

On the probability of reaching a barrier in an Erlang(2) risk process.

M. Mercè Claramunt, M. Teresa Mármol, Ramón Lacayo (2005)

SORT

In this paper the process of aggregated claims in a non-life insurance portfolio as defined in the classical model of risk theory is modified. The Compound Poisson process is replaced with a more general renewal risk process with interocurrence times of Erlangian type. We focus our analysis on the probability that the process of surplus reaches a certain level before ruin occurs, χ(u,b). Our main contribution is the generalization obtained in the computation of χ(u,b) for the case of interocurrence...

On the singular limit of solutions to the Cox-Ingersoll-Ross interest rate model with stochastic volatility

Beáta Stehlíková, Daniel Ševčovič (2009)

Kybernetika

In this paper we are interested in term structure models for pricing zero coupon bonds under rapidly oscillating stochastic volatility. We analyze solutions to the generalized Cox–Ingersoll–Ross two factors model describing clustering of interest rate volatilities. The main goal is to derive an asymptotic expansion of the bond price with respect to a singular parameter representing the fast scale for the stochastic volatility process. We derive the second order asymptotic expansion of a solution...

On the structure of the core of balanced games

Anton Stefanescu (2001)

Kybernetika

The uniform competitive solutions (u.c.s.) are basically stable sets of proposals involving several coalitions which are not necessarily disjoint. In the general framework of NTU games, the uniform competitive solutions have been defined in two earlier papers of the author (Stefanescu [5]) and Stefanescu [6]). The general existence results cover most situations formalized in the framework of the cooperative game theory, including those when the coalitional function is allowed to have empty values....

Currently displaying 1221 – 1240 of 1943