Displaying 341 – 360 of 419

Showing per page

Structurally stable design of output regulation for a class of nonlinear systems

Celia Villanueva-Novelo, Sergej Čelikovský, Bernardino Castillo-Toledo (2001)

Kybernetika

The problem of output regulation of the systems affected by unknown constant parameters is considered here. The main goal is to find a unique feedback compensator (independent on the actual values of unknown parameters) that drives a given error (control criterion) asymptotically to zero for all values of parameters from a certain neighbourhood of their nominal value. Such a task is usually referred to as the structurally stable output regulation problem. Under certain assumptions, such a problem...

Structured redundancy for fault tolerance in state-space models and Petri nets

Christoforos N. Hadjicostis, George C. Verghese (1999)

Kybernetika

The design and implementation of systems in state form has traditionally focused on minimal representations which require the least number of state variables. However, “structured redundancy” – redundancy that has been intentionally introduced in some systematic way – can be extremely important when fault tolerance is desired. The redundancy can be used to detect and correct errors or to guarantee desirable performance despite hardware or computational failures. Modular redundancy, the traditional...

Sturm-Liouville systems are Riesz-spectral systems

Cédric Delattre, Denis Dochain, Joseph Winkin (2003)

International Journal of Applied Mathematics and Computer Science

The class of Sturm-Liouville systems is defined. It appears to be a subclass of Riesz-spectral systems, since it is shown that the negative of a Sturm-Liouville operator is a Riesz-spectral operator on L^2(a,b) and the infinitesimal generator of a C_0-semigroup of bounded linear operators.

Suboptimal fault tolerant control design with the use of discrete optimization

Zdzisław Kowalczuk, Krzysztof E. Oliński (2008)

International Journal of Applied Mathematics and Computer Science

This paper presents a concept of designing fault tolerant control systems with the use of suboptimal methods. We assume that a given (nonlinear) dynamical process is described in a state space. The method consists in searching (at the off-line stage) for a trajectory of operational points of the system state space. The sought trajectory can be constrained by certain conditions, which can express faults or failures already detected. Within this approach, we are able to use the autonomous dynamics...

Sufficient optimality conditions for multivariable control problems

Andrzej Nowakowski (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We study optimal control problems for partial differential equations (focusing on the multidimensional differential equation) with control functions in the Dirichlet boundary conditions under pointwise control (and we admit state - by assuming weak hypotheses) constraints.

Suggestion from the Past?

Machado, J., Jesus, Isabel (2004)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33 (main), 35A22, 78A25, 93A30The generalization of the concept of derivative to non-integer values goes back to the beginning of the theory of differential calculus. Nevertheless, its application in physics and engineering remained unexplored up to the last two decades. Recent research motivated the establishment of strategies taking advantage of the Fractional Calculus (FC) in the modeling and control of many phenomena. In fact, many classical engineering...

Sum-of-squares based observer design for polynomial systems with a known fixed time delay

Branislav Rehák (2015)

Kybernetika

An observer for a system with polynomial nonlinearities is designed. The system is assumed to exhibit a time delay whose value is supposed to be constant and known. The design is carried out using the sum-of-squares method. The key point is defining a suitable Lyapunov-Krasovskii functional. The resulting observer is in form of a polynomial in the observable variables. The results are illustrated by two examples.

Superposition of diffusions with linear generator and its multifractal limit process

End Iglói, György Terdik (2003)

ESAIM: Probability and Statistics

In this paper a new multifractal stochastic process called Limit of the Integrated Superposition of Diffusion processes with Linear differencial Generator (LISDLG) is presented which realistically characterizes the network traffic multifractality. Several properties of the LISDLG model are presented including long range dependence, cumulants, logarithm of the characteristic function, dilative stability, spectrum and bispectrum. The model captures higher-order statistics by the cumulants. The relevance...

Currently displaying 341 – 360 of 419