Displaying 21 – 40 of 204

Showing per page

A repeated imitation model with dependence between stages: Decision strategies and rewards

Pablo J. Villacorta, David A. Pelta (2015)

International Journal of Applied Mathematics and Computer Science

Adversarial decision making is aimed at determining strategies to anticipate the behavior of an opponent trying to learn from our actions. One defense is to make decisions intended to confuse the opponent, although our rewards can be diminished. This idea has already been captured in an adversarial model introduced in a previous work, in which two agents separately issue responses to an unknown sequence of external inputs. Each agent's reward depends on the current input and the responses of both...

A simultaneous localization and tracking method for a worm tracking system

Mateusz Kowalski, Piotr Kaczmarek, Rafał Kabaciński, Mieszko Matuszczak, Kamil Tranbowicz, Robert Sobkowiak (2014)

International Journal of Applied Mathematics and Computer Science

The idea of worm tracking refers to the path analysis of Caenorhabditis elegans nematodes and is an important tool in neurobiology which helps to describe their behavior. Knowledge about nematode behavior can be applied as a model to study the physiological addiction process or other nervous system processes in animals and humans. Tracking is performed by using a special manipulator positioning a microscope with a camera over a dish with an observed individual. In the paper, the accuracy of a nematode's...

A vehicle-track-soil dynamic interaction problem in sequential and parallel formulation

Janusz Kogut, Henryk Ciurej (2010)

International Journal of Applied Mathematics and Computer Science

Some problems regarding numerical modeling of predicted vibrations excited by railway traffic are discussed. Model formulation in the field of structural mechanics comprises a vehicle, a track (often in a tunnel) and soil. Time consuming computations are needed to update large matrices at every discrete step. At first, a sequential Matlab code is generated. Later on, the formulation is modified to use grid computing, thereby a significant reduction in computational time is expected.

Adaptive modeling of reliability properties for control and supervision purposes

Kai-Uwe Dettmann, Dirk Söffker (2011)

International Journal of Applied Mathematics and Computer Science

Modeling of reliability characteristics typically assumes that components and systems fail if a certain individual damage level is exceeded. Every (mechanical) system damage increases irreversibly due to employed loading and (mechanical) stress, respectively. The main issue of damage estimation is adequate determination of the actual state-of-damage. Several mathematical modeling approaches are known in the literature, focusing on the task of how loading effects damage progression (e.g., Wöhler,...

An object-oriented approach to simulating human gait motion based on motion tracking

Martin Tändl, Tobias Stark, Nihat Ercümet Erol, Franz Löer, Andrés Kecskeméthy (2009)

International Journal of Applied Mathematics and Computer Science

Accurate bone motion reconstruction from marker tracking is still an open and challenging issue in biomechanics. Presented in this paper is a novel approach to gait motion reconstruction based on kinematical loops and functional skeleton features extracted from segmented Magnetic Resonance Imaging (MRI) data. The method uses an alternative path for concatenating relative motion starting at the feet and closing at the hip joints. From the evaluation of discrepancies between predicted and geometrically...

An optimal control approach to cancer treatment under immunological activity

Urszula Ledzewicz, Mohammad Naghnaeian, Heinz Schättler (2011)

Applicationes Mathematicae

Mathematical models for cancer treatment that include immunological activity are considered as an optimal control problem with an objective that is motivated by a separatrix of the uncontrolled system. For various growth models on the cancer cells the existence and optimality of singular controls is investigated. For a Gompertzian growth function a synthesis of controls that move the state into the region of attraction of a benign equilibrium point is developed.

An unconditionally stable nonstandard finite difference method applied to a mathematical model of HIV infection

Hasim A. Obaid, Rachid Ouifki, Kailash C. Patidar (2013)

International Journal of Applied Mathematics and Computer Science

We formulate and analyze an unconditionally stable nonstandard finite difference method for a mathematical model of HIV transmission dynamics. The dynamics of this model are studied using the qualitative theory of dynamical systems. These qualitative features of the continuous model are preserved by the numerical method that we propose in this paper. This method also preserves the positivity of the solution, which is one of the essential requirements when modeling epidemic diseases. Robust numerical...

Analysis of Space-Temporal Symmetry in the Early Embryogenesis of Calla palustris L., Araceae

I.V. Rudskiy, G.E. Titova, T.B. Batygina (2010)

Mathematical Modelling of Natural Phenomena

Plants and animals have highly ordered structure both in time and in space, and one of the main questions of modern developmental biology is the transformation of genetic information into the regular structure of organism. Any multicellular plant begins its development from the universal unicellular state and acquire own species-specific structure in the course of cell divisions, cell growth and death, according to own developmental program. However the cellular mechanisms of plant development are...

Application of bearing and distance trees to the identification of landmarks on the coast

Tomasz Praczyk (2007)

International Journal of Applied Mathematics and Computer Science

The problem of continuous position availability is one of the most important issues connected with the human activity at sea. Because the availability of satellite navigational systems can be limited in some cases, e.g. during military operations, one has to consider additional methods of acquiring information about the ship's position. In this paper one of these methods is presented, which is based on exploiting landmarks located on a coastline. A navigational radar is used to obtain information...

Automatic control of mechatronic systems

Kurt Schlacher, Andreas Kugi (2001)

International Journal of Applied Mathematics and Computer Science

This contribution deals with different concepts of nonlinear control for mechatronic systems. Since most physical systems are nonlinear in nature, it is quite obvious that an improvement in the performance of the closed loop can often be achieved only by means of control techniques that take the essential nonlinearities into consideration. Nevertheless, it can be observed that industry often hesitates to implement these nonlinear controllers, despite all advantages existing from the theoretical...

Currently displaying 21 – 40 of 204