Displaying 1041 – 1060 of 1497

Showing per page

One-way communication complexity of symmetric Boolean functions

Jan Arpe, Andreas Jakoby, Maciej Liśkiewicz (2010)

RAIRO - Theoretical Informatics and Applications

We study deterministic one-way communication complexity of functions with Hankel communication matrices. Some structural properties of such matrices are established and applied to the one-way two-party communication complexity of symmetric Boolean functions. It is shown that the number of required communication bits does not depend on the communication direction, provided that neither direction needs maximum complexity. Moreover, in order to obtain an optimal protocol, it is in any case sufficient...

Operations of Points on Elliptic Curve in Projective Coordinates

Yuichi Futa, Hiroyuki Okazaki, Daichi Mizushima, Yasunari Shidama (2012)

Formalized Mathematics

In this article, we formalize operations of points on an elliptic curve over GF(p). Elliptic curve cryptography [7], whose security is based on a difficulty of discrete logarithm problem of elliptic curves, is important for information security. We prove that the two operations of points: compellProjCo and addellProjCo are unary and binary operations of a point over the elliptic curve.

Optimal estimator of hypothesis probability for data mining problems with small samples

Andrzej Piegat, Marek Landowski (2012)

International Journal of Applied Mathematics and Computer Science

The paper presents a new (to the best of the authors' knowledge) estimator of probability called the "Epₕ√2 completeness estimator" along with a theoretical derivation of its optimality. The estimator is especially suitable for a small number of sample items, which is the feature of many real problems characterized by data insufficiency. The control parameter of the estimator is not assumed in an a priori, subjective way, but was determined on the basis of an optimization criterion (the least absolute...

Optimal Locating-Total Dominating Sets in Strips of Height 3

Ville Junnila (2015)

Discussiones Mathematicae Graph Theory

A set C of vertices in a graph G = (V,E) is total dominating in G if all vertices of V are adjacent to a vertex of C. Furthermore, if a total dominating set C in G has the additional property that for any distinct vertices u, v ∈ V C the subsets formed by the vertices of C respectively adjacent to u and v are different, then we say that C is a locating-total dominating set in G. Previously, locating-total dominating sets in strips have been studied by Henning and Jafari Rad (2012). In particular,...

Optimal random sampling for spectrum estimation in DASP applications

Andrzej Tarczynski, Dongdong Qu (2005)

International Journal of Applied Mathematics and Computer Science

In this paper we analyse a class of DASP (Digital Alias-free Signal Processing) methods for spectrum estimation of sampled signals. These methods consist in sampling the processed signals at randomly selected time instants. We construct estimators of Fourier transforms of the analysed signals. The estimators are unbiased inside arbitrarily wide frequency ranges, regardless of how sparsely the signal samples are collected. In order to facilitate quality assessment of the estimators, we calculate...

Optimality conditions for maximizers of the information divergence from an exponential family

František Matúš (2007)

Kybernetika

The information divergence of a probability measure P from an exponential family over a finite set is defined as infimum of the divergences of P from Q subject to Q . All directional derivatives of the divergence from are explicitly found. To this end, behaviour of the conjugate of a log-Laplace transform on the boundary of its domain is analysed. The first order conditions for P to be a maximizer of the divergence from are presented, including new ones when P  is not projectable to .

Optimality of the Width- w Non-adjacent Form: General Characterisation and the Case of Imaginary Quadratic Bases

Clemens Heuberger, Daniel Krenn (2013)

Journal de Théorie des Nombres de Bordeaux

We consider digit expansions j = 0 - 1 Φ j ( d j ) with an endomorphism Φ of an Abelian group. In such a numeral system, the w -NAF condition (each block of w consecutive digits contains at most one nonzero) is shown to minimise the Hamming weight over all expansions with the same digit set if and only if it fulfills the subadditivity condition (the sum of every two expansions of weight 1 admits an optimal w -NAF).This result is then applied to imaginary quadratic bases, which are used for scalar multiplication in elliptic...

Optimally approximating exponential families

Johannes Rauh (2013)

Kybernetika

This article studies exponential families on finite sets such that the information divergence D ( P ) of an arbitrary probability distribution from is bounded by some constant D > 0 . A particular class of low-dimensional exponential families that have low values of D can be obtained from partitions of the state space. The main results concern optimality properties of these partition exponential families. The case where D = log ( 2 ) is studied in detail. This case is special, because if D < log ( 2 ) , then contains all probability...

Order statistics and ( r , s ) -entropy measures

María Dolores Esteban, Domingo Morales, Leandro Pardo, María Luisa Menéndez (1994)

Applications of Mathematics

K. M. Wong and S. Chen [9] analyzed the Shannon entropy of a sequence of random variables under order restrictions. Using ( r , s ) -entropies, I. J. Taneja [8], these results are generalized. Upper and lower bounds to the entropy reduction when the sequence is ordered and conditions under which they are achieved are derived. Theorems are presented showing the difference between the average entropy of the individual order statistics and the entropy of a member of the original independent identically distributed...

Output synchronization of multi-agent port-Hamiltonian systems with link dynamics

Bing Wang, Xinghu Wang, Honghua Wang (2016)

Kybernetika

In this paper, the output synchronization control is considered for multi-agent port-Hamiltonian systems with link dynamics. By using Hamiltonian energy function and Casimir function comprehensively, the design method is proposed to overcome the difficulties taken by link dynamics. The Hamiltonian function is used to handle the dynamic of agent, while the Casimir function is constructed to deal with the dynamic of link. Thus the Lyapunov function is generated by modifying the Hamiltonian function...

Currently displaying 1041 – 1060 of 1497