Hamiltonian stability and subanalytic geometry

Laurent Niederman[1]

  • [1] Université Paris XI Topologie et Dynamique UMR 8628 du CNRS Bât. 425, 91405 Orsay Cedex (France) IMCCE Astronomie et Systèmes Dynamiques UMR 8028 du CNRS 77 avenue Denfert-Rochereau, 75014 Paris (France)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 3, page 795-813
  • ISSN: 0373-0956

Abstract

top
In the 70’s, Nekhorochev proved that for an analytic nearly integrable Hamiltonian system, the action variables of the unperturbed Hamiltonian remain nearly constant over an exponentially long time with respect to the size of the perturbation, provided that the unperturbed Hamiltonian satisfies some generic transversality condition known as steepness. Using theorems of real subanalytic geometry, we derive a geometric criterion for steepness: a numerical function h which is real analytic around a compact set in n is steep if and only if its restriction to any affine subspace of n admits only isolated critical points. We also state a necessary condition for exponential stability, which is close to steepness.Finally, we give methods to compute lower bounds for the steepness indices of an arbitrary steep function.

How to cite

top

Niederman, Laurent. "Hamiltonian stability and subanalytic geometry." Annales de l’institut Fourier 56.3 (2006): 795-813. <http://eudml.org/doc/10164>.

@article{Niederman2006,
abstract = {In the 70’s, Nekhorochev proved that for an analytic nearly integrable Hamiltonian system, the action variables of the unperturbed Hamiltonian remain nearly constant over an exponentially long time with respect to the size of the perturbation, provided that the unperturbed Hamiltonian satisfies some generic transversality condition known as steepness. Using theorems of real subanalytic geometry, we derive a geometric criterion for steepness: a numerical function $h$ which is real analytic around a compact set in $\mathbb\{R\}^n$ is steep if and only if its restriction to any affine subspace of $\mathbb\{R\}^n$ admits only isolated critical points. We also state a necessary condition for exponential stability, which is close to steepness.Finally, we give methods to compute lower bounds for the steepness indices of an arbitrary steep function.},
affiliation = {Université Paris XI Topologie et Dynamique UMR 8628 du CNRS Bât. 425, 91405 Orsay Cedex (France) IMCCE Astronomie et Systèmes Dynamiques UMR 8028 du CNRS 77 avenue Denfert-Rochereau, 75014 Paris (France)},
author = {Niederman, Laurent},
journal = {Annales de l’institut Fourier},
keywords = {Hamiltonian systems; stability; subanalytic geometry; curve selection lemma; Lojasiewicz’s inequalities; Lojasiewicz's inequalities},
language = {eng},
number = {3},
pages = {795-813},
publisher = {Association des Annales de l’institut Fourier},
title = {Hamiltonian stability and subanalytic geometry},
url = {http://eudml.org/doc/10164},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Niederman, Laurent
TI - Hamiltonian stability and subanalytic geometry
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 3
SP - 795
EP - 813
AB - In the 70’s, Nekhorochev proved that for an analytic nearly integrable Hamiltonian system, the action variables of the unperturbed Hamiltonian remain nearly constant over an exponentially long time with respect to the size of the perturbation, provided that the unperturbed Hamiltonian satisfies some generic transversality condition known as steepness. Using theorems of real subanalytic geometry, we derive a geometric criterion for steepness: a numerical function $h$ which is real analytic around a compact set in $\mathbb{R}^n$ is steep if and only if its restriction to any affine subspace of $\mathbb{R}^n$ admits only isolated critical points. We also state a necessary condition for exponential stability, which is close to steepness.Finally, we give methods to compute lower bounds for the steepness indices of an arbitrary steep function.
LA - eng
KW - Hamiltonian systems; stability; subanalytic geometry; curve selection lemma; Lojasiewicz’s inequalities; Lojasiewicz's inequalities
UR - http://eudml.org/doc/10164
ER -

References

top
  1. V. I. Arnold, S. M. Gusein-Zade, A.N. Varchenko, Singularities of differentiable maps. Volume II: Monodromy and asymptotics of integrals, Monographs in Mathematics 83 (1988), Birkhäuser-Verlag, Boston Zbl0659.58002MR966191
  2. G. Benettin, F. Fasso, M. Guzzo, Nekhorochev stability of L4 and L5 in the spatial restricted three body problem, Regul. Chaotic Dyn. 3 (1998), 56-72 Zbl0934.70010MR1704969
  3. E. Bierstone, P. D. Milman, Semianalytic and subanalytic sets, Publ. Math. IHÉS 67 (1988), 5-42 Zbl0674.32002MR972342
  4. J. Bochnak, J. J. Risler, Sur les exposants de Lojasiewicz, Comment. Math. Helvetici 50 (1975), 493-507 Zbl0321.32006MR404674
  5. H. W. Broer, G. B. Huitema, M. B. Sevryuk, Quasi-periodicity in families of dynamical systems: order amidst chaos, Lecture Notes in Math. 1645 (1996), Springer-Verlag, New York Zbl0870.58087MR1484969
  6. J. Féjoz, Démonstration du théorème d’Arnold sur la stabilité du système planétaire (d’après Herman), Ergodic Th. Dyn. Syst. 24 (2004), 1521-1582 Zbl1087.37506MR2104595
  7. A. Giorgilli, On the problem of stability for near to integrable Hamiltonian systems, Proceedings of the International Congress of Mathematicians Berlin 1998, Documenta Mathematica III, extra vol.ICM 1998 (1998), 143-152, Documenta Mathematica Zbl0910.58024MR1648149
  8. M. Guzzo, Stability of the asteroid belt dynamical system, (2003) 
  9. M. Guzzo, A. Morbidelli, Construction of a Nekhorochev like result for the asteroid belt dynamical system, Celestial Mechanics 66 (1997), 255-292 Zbl0883.58032MR1473577
  10. J. Gwozdziewicz, The Lojasiewicz exponent of an analytic function at an isolated zero, Comment. Math. Helv. 74 (1999), 364-375 Zbl0948.32028MR1710702
  11. M. Herman, Dynamics connected with indefinite normal torsion, twists mapping and their applications, R.McGehee, K.Meyer, (Eds), IMA Conference Proceedings Series 44 (1992), 153-182, Springer-Verlag, New York Zbl0763.58009MR1219355
  12. H. Hironaka, Subanalytic sets, Number theory, algebraic geometry and commutative algebra, volume in honor of A.Akizuki (1973), 453-493, Kinokunya, Tokyo Zbl0297.32008MR377101
  13. I. S. Ilyashenko, A steepness test for analytic functions, Russian Math. Surveys 41 (1986), 229-230 Zbl0597.32003
  14. P. Lochak, Canonical perturbation theory via simultaneous approximation, Russian Math. Surveys 47 (1992), 57-133 Zbl0795.58042MR1209145
  15. P. Lochak, A. I. Neishtadt, Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian, Chaos 2 (1992), 495-499 Zbl1055.37573MR1195881
  16. S. Lojasiewicz, Sur la géométrie semi- et sous-analytique. (On semi- and subanalytic geometry), Ann. Inst. Fourier 43 (1993), 1575-1595 Zbl0803.32002MR1275210
  17. J.-P. Marco, D. Sauzin, Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian Systems, Publ. Math. IHÉS 96 (2003), 199-275 Zbl1086.37031MR1986314
  18. N. N. Nekhorochev, Stable lower estimates for smooth mappings and for gradients of smooth functions, Math. USSR Sbornik 19 (1973), 425-467 Zbl0281.26009
  19. N. N. Nekhorochev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Russian Math. Surveys 32 (1977), 1-65 Zbl0389.70028MR501140
  20. N. N. Nekhorochev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems 2, Trudy Sem. Petrovs. 5 (1979), 5-50 Zbl0668.34046
  21. L. Niederman, Stability over exponentially long times in the planetary problem, Nonlinearity 9 (1996), 1703-1751 Zbl0926.70025MR1419468
  22. L. Niederman, Exponential stability for small perturbations of steep integrable Hamiltonian systems, Erg. Th. Dyn. Syst. 24 (2004), 593-608 Zbl1071.37038MR2054052
  23. L. Niederman, Prevalence of exponential stability among nearly-integrable Hamiltonian systems, (2004) Zbl1130.37386MR2054052
  24. A. Ploski, Multiplicity and the Lojasiewicz exponent, Banach Cent. Publ. 20 (1988), 353-364 Zbl0661.32018MR1101851
  25. J. Pöschel, Nekhorochev estimates for quasi-convex Hamiltonian systems, Math. Z. 213 (1993), 187-217 Zbl0857.70009MR1221713
  26. H. Russmann, Invariant tori in non-degenerate nearly integrable Hamiltonian systems, Regul. Chaotic Dyn. 6 (2001), 119-204 Zbl0992.37050MR1843664
  27. P. Solerno, Effective Lojasiewicz inequalities in semialgebraic geometry, Appl. Alg. Eng. Commun. Comput. 2 (1991), 1-14 Zbl0754.14035MR1209239
  28. M. Spivak, A comprehensive introduction to differential geometry. V, (1979), Publish or Perish, Berkeley Zbl0439.53005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.