Hamiltonian stability and subanalytic geometry
- [1] Université Paris XI Topologie et Dynamique UMR 8628 du CNRS Bât. 425, 91405 Orsay Cedex (France) IMCCE Astronomie et Systèmes Dynamiques UMR 8028 du CNRS 77 avenue Denfert-Rochereau, 75014 Paris (France)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 3, page 795-813
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- V. I. Arnold, S. M. Gusein-Zade, A.N. Varchenko, Singularities of differentiable maps. Volume II: Monodromy and asymptotics of integrals, Monographs in Mathematics 83 (1988), Birkhäuser-Verlag, Boston Zbl0659.58002MR966191
- G. Benettin, F. Fasso, M. Guzzo, Nekhorochev stability of L4 and L5 in the spatial restricted three body problem, Regul. Chaotic Dyn. 3 (1998), 56-72 Zbl0934.70010MR1704969
- E. Bierstone, P. D. Milman, Semianalytic and subanalytic sets, Publ. Math. IHÉS 67 (1988), 5-42 Zbl0674.32002MR972342
- J. Bochnak, J. J. Risler, Sur les exposants de Lojasiewicz, Comment. Math. Helvetici 50 (1975), 493-507 Zbl0321.32006MR404674
- H. W. Broer, G. B. Huitema, M. B. Sevryuk, Quasi-periodicity in families of dynamical systems: order amidst chaos, Lecture Notes in Math. 1645 (1996), Springer-Verlag, New York Zbl0870.58087MR1484969
- J. Féjoz, Démonstration du théorème d’Arnold sur la stabilité du système planétaire (d’après Herman), Ergodic Th. Dyn. Syst. 24 (2004), 1521-1582 Zbl1087.37506MR2104595
- A. Giorgilli, On the problem of stability for near to integrable Hamiltonian systems, Proceedings of the International Congress of Mathematicians Berlin 1998, Documenta Mathematica III, extra vol.ICM 1998 (1998), 143-152, Documenta Mathematica Zbl0910.58024MR1648149
- M. Guzzo, Stability of the asteroid belt dynamical system, (2003)
- M. Guzzo, A. Morbidelli, Construction of a Nekhorochev like result for the asteroid belt dynamical system, Celestial Mechanics 66 (1997), 255-292 Zbl0883.58032MR1473577
- J. Gwozdziewicz, The Lojasiewicz exponent of an analytic function at an isolated zero, Comment. Math. Helv. 74 (1999), 364-375 Zbl0948.32028MR1710702
- M. Herman, Dynamics connected with indefinite normal torsion, twists mapping and their applications, R.McGehee, K.Meyer, (Eds), IMA Conference Proceedings Series 44 (1992), 153-182, Springer-Verlag, New York Zbl0763.58009MR1219355
- H. Hironaka, Subanalytic sets, Number theory, algebraic geometry and commutative algebra, volume in honor of A.Akizuki (1973), 453-493, Kinokunya, Tokyo Zbl0297.32008MR377101
- I. S. Ilyashenko, A steepness test for analytic functions, Russian Math. Surveys 41 (1986), 229-230 Zbl0597.32003
- P. Lochak, Canonical perturbation theory via simultaneous approximation, Russian Math. Surveys 47 (1992), 57-133 Zbl0795.58042MR1209145
- P. Lochak, A. I. Neishtadt, Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian, Chaos 2 (1992), 495-499 Zbl1055.37573MR1195881
- S. Lojasiewicz, Sur la géométrie semi- et sous-analytique. (On semi- and subanalytic geometry), Ann. Inst. Fourier 43 (1993), 1575-1595 Zbl0803.32002MR1275210
- J.-P. Marco, D. Sauzin, Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian Systems, Publ. Math. IHÉS 96 (2003), 199-275 Zbl1086.37031MR1986314
- N. N. Nekhorochev, Stable lower estimates for smooth mappings and for gradients of smooth functions, Math. USSR Sbornik 19 (1973), 425-467 Zbl0281.26009
- N. N. Nekhorochev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Russian Math. Surveys 32 (1977), 1-65 Zbl0389.70028MR501140
- N. N. Nekhorochev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems 2, Trudy Sem. Petrovs. 5 (1979), 5-50 Zbl0668.34046
- L. Niederman, Stability over exponentially long times in the planetary problem, Nonlinearity 9 (1996), 1703-1751 Zbl0926.70025MR1419468
- L. Niederman, Exponential stability for small perturbations of steep integrable Hamiltonian systems, Erg. Th. Dyn. Syst. 24 (2004), 593-608 Zbl1071.37038MR2054052
- L. Niederman, Prevalence of exponential stability among nearly-integrable Hamiltonian systems, (2004) Zbl1130.37386MR2054052
- A. Ploski, Multiplicity and the Lojasiewicz exponent, Banach Cent. Publ. 20 (1988), 353-364 Zbl0661.32018MR1101851
- J. Pöschel, Nekhorochev estimates for quasi-convex Hamiltonian systems, Math. Z. 213 (1993), 187-217 Zbl0857.70009MR1221713
- H. Russmann, Invariant tori in non-degenerate nearly integrable Hamiltonian systems, Regul. Chaotic Dyn. 6 (2001), 119-204 Zbl0992.37050MR1843664
- P. Solerno, Effective Lojasiewicz inequalities in semialgebraic geometry, Appl. Alg. Eng. Commun. Comput. 2 (1991), 1-14 Zbl0754.14035MR1209239
- M. Spivak, A comprehensive introduction to differential geometry. V, (1979), Publish or Perish, Berkeley Zbl0439.53005