Generic Nekhoroshev theory without small divisors
Abed Bounemoura[1]; Laurent Niederman[1]
- [1] Université Paris-Sud 11 Faculté des Sciences d’Orsay Département de Mathématiques Bâtiment 425 91405 Orsay cedex (France)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 1, page 277-324
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBounemoura, Abed, and Niederman, Laurent. "Generic Nekhoroshev theory without small divisors." Annales de l’institut Fourier 62.1 (2012): 277-324. <http://eudml.org/doc/251101>.
@article{Bounemoura2012,
abstract = {In this article, we present a new approach of Nekhoroshev’s theory for a generic unperturbed Hamiltonian which completely avoids small divisors problems. The proof is an extension of a method introduced by P. Lochak, it combines averaging along periodic orbits with simultaneous Diophantine approximation and uses geometric arguments designed by the second author to handle generic integrable Hamiltonians. This method allows to deal with generic non-analytic Hamiltonians and to obtain new results of generic stability around linearly stable tori.},
affiliation = {Université Paris-Sud 11 Faculté des Sciences d’Orsay Département de Mathématiques Bâtiment 425 91405 Orsay cedex (France); Université Paris-Sud 11 Faculté des Sciences d’Orsay Département de Mathématiques Bâtiment 425 91405 Orsay cedex (France)},
author = {Bounemoura, Abed, Niederman, Laurent},
journal = {Annales de l’institut Fourier},
keywords = {Hamiltonian systems; perturbation of integrable systems; effective stability; small divisor problem},
language = {eng},
number = {1},
pages = {277-324},
publisher = {Association des Annales de l’institut Fourier},
title = {Generic Nekhoroshev theory without small divisors},
url = {http://eudml.org/doc/251101},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Bounemoura, Abed
AU - Niederman, Laurent
TI - Generic Nekhoroshev theory without small divisors
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 1
SP - 277
EP - 324
AB - In this article, we present a new approach of Nekhoroshev’s theory for a generic unperturbed Hamiltonian which completely avoids small divisors problems. The proof is an extension of a method introduced by P. Lochak, it combines averaging along periodic orbits with simultaneous Diophantine approximation and uses geometric arguments designed by the second author to handle generic integrable Hamiltonians. This method allows to deal with generic non-analytic Hamiltonians and to obtain new results of generic stability around linearly stable tori.
LA - eng
KW - Hamiltonian systems; perturbation of integrable systems; effective stability; small divisor problem
UR - http://eudml.org/doc/251101
ER -
References
top- Vladimir I. Arnold, Instability of dynamical systems with many degrees of freedom, Dokl. Akad. Nauk SSSR 156 (1964), 9-12 Zbl0135.42602MR163026
- Vladimir I. Arnold, Valery V. Kozlov, Anatoly I. Neishtadt, Mathematical aspects of classical and celestial mechanics, 3 (2006), Springer-Verlag, Berlin Zbl0885.70001MR2269239
- Dario Bambusi, Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations, Math. Z. 230 (1999), 345-387 Zbl0928.35160MR1676714
- Dario Bambusi, Antonio Giorgilli, Exponential stability of states close to resonance in infinite-dimensional Hamiltonian systems, J. Statist. Phys. 71 (1993), 569-606 Zbl0943.82549MR1219023
- Dario Bambusi, N. N. Nekhoroshev, Long time stability in perturbations of completely resonant PDE’s, Acta Appl. Math. 70 (2002), 1-22 Zbl1106.37308MR1892373
- Jean-Benoît Bost, Tores invariants des systèmes dynamiques hamiltoniens (d’après Kolmogorov, Arnold, Moser, Rüssmann, Zehnder, Herman, Pöschel,), Astérisque (1986), 113-157 Zbl0602.58021
- Abed Bounemoura, Generic super-exponential stability of invariant tori, (2009) Zbl1251.37062
- Abed Bounemoura, Nekhoroshev estimates for finitely differentiable quasi-convex Hamiltonians, J. Differential Equations 249 (2010), 2905-2920 Zbl1206.37029MR2718671
- Jean Bourgain, Remarks on stability and diffusion in high-dimensional Hamiltonian systems and partial differential equations, Ergodic Theory Dynam. Systems 24 (2004), 1331-1357 Zbl1087.37056MR2104588
- J. W. S. Cassels, An introduction to Diophantine approximation, (1957), Cambridge University Press, New York Zbl0077.04801MR87708
- Jens Peter Reus Christensen, On sets of Haar measure zero in abelian Polish groups, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972) 13 (1972), 255-260 (1973) Zbl0249.43002MR326293
- Amadeu Delshams, Pere Gutiérrez, Effective stability and KAM theory, J. Differential Equations 128 (1996), 415-490 Zbl0858.58012MR1398328
- Francesco Fassò, Massimiliano Guzzo, Giancarlo Benettin, Nekhoroshev-stability of elliptic equilibria of Hamiltonian systems, Comm. Math. Phys. 197 (1998), 347-360 Zbl0928.37017MR1652750
- Brian R. Hunt, Vadim Yu. Kaloshin, Prevalence, 3 (2010), 43-87, Henk BroerF TakensF. T. Zbl1317.37013
- Brian R. Hunt, Tim Sauer, James A. Yorke, Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 217-238 Zbl0763.28009MR1161274
- Yu. S. Il’yashenko, A criterion of steepness for analytic functions, Uspekhi Mat. Nauk 41 (1986), 193-194 Zbl0597.32003MR832421
- Kostya Khanin, João Lopes Dias, Jens Marklof, Renormalization of multidimensional Hamiltonian flows, Nonlinearity 19 (2006), 2727-2753 Zbl1179.37061MR2273756
- Kostya Khanin, João Lopes Dias, Jens Marklof, Multidimensional continued fractions, dynamical renormalization and KAM theory, Comm. Math. Phys. 270 (2007), 197-231 Zbl1114.37009MR2276445
- A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton’s function, Dokl. Akad. Nauk SSSR (N.S.) 98 (1954), 527-530 Zbl0056.31502MR68687
- Rafael de la Llave, A tutorial on KAM theory, Smooth ergodic theory and its applications (Seattle, WA, 1999) 69 (2001), 175-292, Amer. Math. Soc., Providence, RI Zbl1055.37064MR1858536
- P. Lochak, Canonical perturbation theory: an approach based on joint approximations, Uspekhi Mat. Nauk 47 (1992), 59-140 Zbl0795.58042MR1209145
- P. Lochak, C. Meunier, Multiphase averaging for classical systems, 72 (1988), Springer-Verlag, New York Zbl0668.34044MR959890
- P. Lochak, A. I. Neĭshtadt, Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian, Chaos 2 (1992), 495-499 Zbl1055.37573MR1195881
- P. Lochak, A. I. Neĭshtadt, L. Niederman, Stability of nearly integrable convex Hamiltonian systems over exponentially long times, Seminar on Dynamical Systems (St. Petersburg, 1991) 12 (1994), 15-34, Birkhäuser, Basel Zbl0807.70020MR1279386
- Jean-Pierre Marco, David Sauzin, Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems, Publ. Math. Inst. Hautes Études Sci. (2002), 199-275 (2003) Zbl1086.37031MR1986314
- Alessandro Morbidelli, Antonio Giorgilli, Superexponential stability of KAM tori, J. Statist. Phys. 78 (1995), 1607-1617 Zbl1080.37512MR1316113
- Alessandro Morbidelli, Massimiliano Guzzo, The Nekhoroshev theorem and the asteroid belt dynamical system, Celestial Mech. Dynam. Astronom. 65 (1996/97), 107-136 Zbl0891.70007MR1461601
- A. I. Neĭshtadt, The separation of motions in systems with rapidly rotating phase, Prikl. Mat. Mekh. 48 (1984), 197-204 Zbl0571.70022MR802878
- N. N. Nekhorošev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Uspehi Mat. Nauk 32 (1977), 5-66, 287 Zbl0389.70028MR501140
- N. N. Nekhorošev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. II, Trudy Sem. Petrovsk. (1979), 5-50 Zbl0668.34046MR549621
- Laurent Niederman, Nonlinear stability around an elliptic equilibrium point in a Hamiltonian system, Nonlinearity 11 (1998), 1465-1479 Zbl0917.58015MR1660357
- Laurent Niederman, Exponential stability for small perturbations of steep integrable Hamiltonian systems, Ergodic Theory Dynam. Systems 24 (2004), 593-608 Zbl1071.37038MR2054052
- Laurent Niederman, Hamiltonian stability and subanalytic geometry, Ann. Inst. Fourier (Grenoble) 56 (2006), 795-813 Zbl1120.14048MR2244230
- Laurent Niederman, Prevalence of exponential stability among nearly integrable Hamiltonian systems, Ergodic Theory Dynam. Systems 27 (2007), 905-928 Zbl1130.37386MR2322185
- Laurent Niederman, Nekhoroshev Theory, Encyclopedia of Complexity and Systems Science (2009), 5986-5998, Springer
- William Ott, James A. Yorke, Prevalence, Bull. Amer. Math. Soc. (N.S.) 42 (2005), 263-290 (electronic) Zbl0782.28007MR2149086
- Jürgen Pöschel, On Nekhoroshev estimates for a nonlinear Schrödinger equation and a theorem by Bambusi, Nonlinearity 12 (1999), 1587-1600 Zbl0935.35154MR1726666
- Jürgen Pöschel, On Nekhoroshev’s estimate at an elliptic equilibrium, Internat. Math. Res. Notices (1999), 203-215 Zbl0918.58026
- Jürgen Pöschel, A lecture on the classical KAM theorem, Smooth ergodic theory and its applications (Seattle, WA, 1999) 69 (2001), 707-732, Amer. Math. Soc., Providence, RI Zbl0999.37053MR1858551
- Jean-Pierre Ramis, Reinhard Schäfke, Gevrey separation of fast and slow variables, Nonlinearity 9 (1996), 353-384 Zbl0925.70161MR1384480
- Y. Yomdin, The geometry of critical and near-critical values of differentiable mappings, Math. Ann. 264 (1983), 495-515 Zbl0507.57019MR716263
- Yosef Yomdin, Georges Comte, Tame geometry with application in smooth analysis, 1834 (2004), Springer-Verlag, Berlin Zbl1076.14079MR2041428
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.