Generic Nekhoroshev theory without small divisors

Abed Bounemoura[1]; Laurent Niederman[1]

  • [1] Université Paris-Sud 11 Faculté des Sciences d’Orsay Département de Mathématiques Bâtiment 425 91405 Orsay cedex (France)

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 1, page 277-324
  • ISSN: 0373-0956

Abstract

top
In this article, we present a new approach of Nekhoroshev’s theory for a generic unperturbed Hamiltonian which completely avoids small divisors problems. The proof is an extension of a method introduced by P. Lochak, it combines averaging along periodic orbits with simultaneous Diophantine approximation and uses geometric arguments designed by the second author to handle generic integrable Hamiltonians. This method allows to deal with generic non-analytic Hamiltonians and to obtain new results of generic stability around linearly stable tori.

How to cite

top

Bounemoura, Abed, and Niederman, Laurent. "Generic Nekhoroshev theory without small divisors." Annales de l’institut Fourier 62.1 (2012): 277-324. <http://eudml.org/doc/251101>.

@article{Bounemoura2012,
abstract = {In this article, we present a new approach of Nekhoroshev’s theory for a generic unperturbed Hamiltonian which completely avoids small divisors problems. The proof is an extension of a method introduced by P. Lochak, it combines averaging along periodic orbits with simultaneous Diophantine approximation and uses geometric arguments designed by the second author to handle generic integrable Hamiltonians. This method allows to deal with generic non-analytic Hamiltonians and to obtain new results of generic stability around linearly stable tori.},
affiliation = {Université Paris-Sud 11 Faculté des Sciences d’Orsay Département de Mathématiques Bâtiment 425 91405 Orsay cedex (France); Université Paris-Sud 11 Faculté des Sciences d’Orsay Département de Mathématiques Bâtiment 425 91405 Orsay cedex (France)},
author = {Bounemoura, Abed, Niederman, Laurent},
journal = {Annales de l’institut Fourier},
keywords = {Hamiltonian systems; perturbation of integrable systems; effective stability; small divisor problem},
language = {eng},
number = {1},
pages = {277-324},
publisher = {Association des Annales de l’institut Fourier},
title = {Generic Nekhoroshev theory without small divisors},
url = {http://eudml.org/doc/251101},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Bounemoura, Abed
AU - Niederman, Laurent
TI - Generic Nekhoroshev theory without small divisors
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 1
SP - 277
EP - 324
AB - In this article, we present a new approach of Nekhoroshev’s theory for a generic unperturbed Hamiltonian which completely avoids small divisors problems. The proof is an extension of a method introduced by P. Lochak, it combines averaging along periodic orbits with simultaneous Diophantine approximation and uses geometric arguments designed by the second author to handle generic integrable Hamiltonians. This method allows to deal with generic non-analytic Hamiltonians and to obtain new results of generic stability around linearly stable tori.
LA - eng
KW - Hamiltonian systems; perturbation of integrable systems; effective stability; small divisor problem
UR - http://eudml.org/doc/251101
ER -

References

top
  1. Vladimir I. Arnold, Instability of dynamical systems with many degrees of freedom, Dokl. Akad. Nauk SSSR 156 (1964), 9-12 Zbl0135.42602MR163026
  2. Vladimir I. Arnold, Valery V. Kozlov, Anatoly I. Neishtadt, Mathematical aspects of classical and celestial mechanics, 3 (2006), Springer-Verlag, Berlin Zbl0885.70001MR2269239
  3. Dario Bambusi, Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations, Math. Z. 230 (1999), 345-387 Zbl0928.35160MR1676714
  4. Dario Bambusi, Antonio Giorgilli, Exponential stability of states close to resonance in infinite-dimensional Hamiltonian systems, J. Statist. Phys. 71 (1993), 569-606 Zbl0943.82549MR1219023
  5. Dario Bambusi, N. N. Nekhoroshev, Long time stability in perturbations of completely resonant PDE’s, Acta Appl. Math. 70 (2002), 1-22 Zbl1106.37308MR1892373
  6. Jean-Benoît Bost, Tores invariants des systèmes dynamiques hamiltoniens (d’après Kolmogorov, Arnol d, Moser, Rüssmann, Zehnder, Herman, Pöschel, ... ), Astérisque (1986), 113-157 Zbl0602.58021
  7. Abed Bounemoura, Generic super-exponential stability of invariant tori, (2009) Zbl1251.37062
  8. Abed Bounemoura, Nekhoroshev estimates for finitely differentiable quasi-convex Hamiltonians, J. Differential Equations 249 (2010), 2905-2920 Zbl1206.37029MR2718671
  9. Jean Bourgain, Remarks on stability and diffusion in high-dimensional Hamiltonian systems and partial differential equations, Ergodic Theory Dynam. Systems 24 (2004), 1331-1357 Zbl1087.37056MR2104588
  10. J. W. S. Cassels, An introduction to Diophantine approximation, (1957), Cambridge University Press, New York Zbl0077.04801MR87708
  11. Jens Peter Reus Christensen, On sets of Haar measure zero in abelian Polish groups, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972) 13 (1972), 255-260 (1973) Zbl0249.43002MR326293
  12. Amadeu Delshams, Pere Gutiérrez, Effective stability and KAM theory, J. Differential Equations 128 (1996), 415-490 Zbl0858.58012MR1398328
  13. Francesco Fassò, Massimiliano Guzzo, Giancarlo Benettin, Nekhoroshev-stability of elliptic equilibria of Hamiltonian systems, Comm. Math. Phys. 197 (1998), 347-360 Zbl0928.37017MR1652750
  14. Brian R. Hunt, Vadim Yu. Kaloshin, Prevalence, 3 (2010), 43-87, Henk BroerF TakensF. T. Zbl1317.37013
  15. Brian R. Hunt, Tim Sauer, James A. Yorke, Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 217-238 Zbl0763.28009MR1161274
  16. Yu. S. Il’yashenko, A criterion of steepness for analytic functions, Uspekhi Mat. Nauk 41 (1986), 193-194 Zbl0597.32003MR832421
  17. Kostya Khanin, João Lopes Dias, Jens Marklof, Renormalization of multidimensional Hamiltonian flows, Nonlinearity 19 (2006), 2727-2753 Zbl1179.37061MR2273756
  18. Kostya Khanin, João Lopes Dias, Jens Marklof, Multidimensional continued fractions, dynamical renormalization and KAM theory, Comm. Math. Phys. 270 (2007), 197-231 Zbl1114.37009MR2276445
  19. A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton’s function, Dokl. Akad. Nauk SSSR (N.S.) 98 (1954), 527-530 Zbl0056.31502MR68687
  20. Rafael de la Llave, A tutorial on KAM theory, Smooth ergodic theory and its applications (Seattle, WA, 1999) 69 (2001), 175-292, Amer. Math. Soc., Providence, RI Zbl1055.37064MR1858536
  21. P. Lochak, Canonical perturbation theory: an approach based on joint approximations, Uspekhi Mat. Nauk 47 (1992), 59-140 Zbl0795.58042MR1209145
  22. P. Lochak, C. Meunier, Multiphase averaging for classical systems, 72 (1988), Springer-Verlag, New York Zbl0668.34044MR959890
  23. P. Lochak, A. I. Neĭshtadt, Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian, Chaos 2 (1992), 495-499 Zbl1055.37573MR1195881
  24. P. Lochak, A. I. Neĭshtadt, L. Niederman, Stability of nearly integrable convex Hamiltonian systems over exponentially long times, Seminar on Dynamical Systems (St. Petersburg, 1991) 12 (1994), 15-34, Birkhäuser, Basel Zbl0807.70020MR1279386
  25. Jean-Pierre Marco, David Sauzin, Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems, Publ. Math. Inst. Hautes Études Sci. (2002), 199-275 (2003) Zbl1086.37031MR1986314
  26. Alessandro Morbidelli, Antonio Giorgilli, Superexponential stability of KAM tori, J. Statist. Phys. 78 (1995), 1607-1617 Zbl1080.37512MR1316113
  27. Alessandro Morbidelli, Massimiliano Guzzo, The Nekhoroshev theorem and the asteroid belt dynamical system, Celestial Mech. Dynam. Astronom. 65 (1996/97), 107-136 Zbl0891.70007MR1461601
  28. A. I. Neĭshtadt, The separation of motions in systems with rapidly rotating phase, Prikl. Mat. Mekh. 48 (1984), 197-204 Zbl0571.70022MR802878
  29. N. N. Nekhorošev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Uspehi Mat. Nauk 32 (1977), 5-66, 287 Zbl0389.70028MR501140
  30. N. N. Nekhorošev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. II, Trudy Sem. Petrovsk. (1979), 5-50 Zbl0668.34046MR549621
  31. Laurent Niederman, Nonlinear stability around an elliptic equilibrium point in a Hamiltonian system, Nonlinearity 11 (1998), 1465-1479 Zbl0917.58015MR1660357
  32. Laurent Niederman, Exponential stability for small perturbations of steep integrable Hamiltonian systems, Ergodic Theory Dynam. Systems 24 (2004), 593-608 Zbl1071.37038MR2054052
  33. Laurent Niederman, Hamiltonian stability and subanalytic geometry, Ann. Inst. Fourier (Grenoble) 56 (2006), 795-813 Zbl1120.14048MR2244230
  34. Laurent Niederman, Prevalence of exponential stability among nearly integrable Hamiltonian systems, Ergodic Theory Dynam. Systems 27 (2007), 905-928 Zbl1130.37386MR2322185
  35. Laurent Niederman, Nekhoroshev Theory, Encyclopedia of Complexity and Systems Science (2009), 5986-5998, Springer 
  36. William Ott, James A. Yorke, Prevalence, Bull. Amer. Math. Soc. (N.S.) 42 (2005), 263-290 (electronic) Zbl0782.28007MR2149086
  37. Jürgen Pöschel, On Nekhoroshev estimates for a nonlinear Schrödinger equation and a theorem by Bambusi, Nonlinearity 12 (1999), 1587-1600 Zbl0935.35154MR1726666
  38. Jürgen Pöschel, On Nekhoroshev’s estimate at an elliptic equilibrium, Internat. Math. Res. Notices (1999), 203-215 Zbl0918.58026
  39. Jürgen Pöschel, A lecture on the classical KAM theorem, Smooth ergodic theory and its applications (Seattle, WA, 1999) 69 (2001), 707-732, Amer. Math. Soc., Providence, RI Zbl0999.37053MR1858551
  40. Jean-Pierre Ramis, Reinhard Schäfke, Gevrey separation of fast and slow variables, Nonlinearity 9 (1996), 353-384 Zbl0925.70161MR1384480
  41. Y. Yomdin, The geometry of critical and near-critical values of differentiable mappings, Math. Ann. 264 (1983), 495-515 Zbl0507.57019MR716263
  42. Yosef Yomdin, Georges Comte, Tame geometry with application in smooth analysis, 1834 (2004), Springer-Verlag, Berlin Zbl1076.14079MR2041428

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.