Classical integrable mechanical systems and their integrable perturbations.
In this article, we present a new approach of Nekhoroshev’s theory for a generic unperturbed Hamiltonian which completely avoids small divisors problems. The proof is an extension of a method introduced by P. Lochak, it combines averaging along periodic orbits with simultaneous Diophantine approximation and uses geometric arguments designed by the second author to handle generic integrable Hamiltonians. This method allows to deal with generic non-analytic Hamiltonians and to obtain new results of...
In the 70’s, Nekhorochev proved that for an analytic nearly integrable Hamiltonian system, the action variables of the unperturbed Hamiltonian remain nearly constant over an exponentially long time with respect to the size of the perturbation, provided that the unperturbed Hamiltonian satisfies some generic transversality condition known as steepness. Using theorems of real subanalytic geometry, we derive a geometric criterion for steepness: a numerical function which is real analytic around a...