Invariance for multiples of the twisted canonical bundle
- [1] Université Nancy 1 Institut Elie Cartan BP 239 54506 Vandœuvre–lès–Nancy Cedex (France)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 1, page 289-300
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topClaudon, Benoît. "Invariance for multiples of the twisted canonical bundle." Annales de l’institut Fourier 57.1 (2007): 289-300. <http://eudml.org/doc/10222>.
@article{Claudon2007,
abstract = {Let $\mathcal\{X\}\rightarrow \Delta $ a smooth projective family and $(L,h)$ a pseudo-effective line bundle on $\mathcal\{X\}$ (i.e. with a non-negative curvature current $\Theta \{h\}\{L\}$). In its works on invariance of plurigenera, Y.-T. Siu was interested in extending sections of $mK_\{\mathcal\{X\}_0\}+L$ (defined over the central fiber of the family $\mathcal\{X\}_0$) to sections of $mK_\mathcal\{X\}+L$. In this article we consider the following problem: to extend sections of $m(K_\mathcal\{X\}+L)$. More precisely, we show the following result: assuming the triviality of the multiplier ideal sheaf $\mathcal\{I\}(\mathcal\{X\}_0,h_\{\vert \mathcal\{X\}_0\})$, any section of $m(K_\{\mathcal\{X\}_0\}+L)$ extends to $\mathcal\{X\}$ ; in other words, the restriction map:\[H^0(\mathcal\{X\},m(K\_\{\mathcal\{X\}\}+L))\rightarrow H^0(\mathcal\{X\}\_0,m(K\_\{\mathcal\{X\}\_0\}+L))\]is surjective.At the end of this paper, we compare this result to the case of projective manifolds: in this situation an analogous statement (due to S. Takayama) is given to extend (twisted) pluricanonical sections. This lead us to discuss the different positivity assumptions required in extension results.},
affiliation = {Université Nancy 1 Institut Elie Cartan BP 239 54506 Vandœuvre–lès–Nancy Cedex (France)},
author = {Claudon, Benoît},
journal = {Annales de l’institut Fourier},
keywords = {Extensions of pluricanonical sections; invariance of plurigenera; pseudoeffective line bundle; singular metric; multiplier ideal sheaf; extensions of pluricanonical sections; pseudo-effective line bundle},
language = {eng},
number = {1},
pages = {289-300},
publisher = {Association des Annales de l’institut Fourier},
title = {Invariance for multiples of the twisted canonical bundle},
url = {http://eudml.org/doc/10222},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Claudon, Benoît
TI - Invariance for multiples of the twisted canonical bundle
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 1
SP - 289
EP - 300
AB - Let $\mathcal{X}\rightarrow \Delta $ a smooth projective family and $(L,h)$ a pseudo-effective line bundle on $\mathcal{X}$ (i.e. with a non-negative curvature current $\Theta {h}{L}$). In its works on invariance of plurigenera, Y.-T. Siu was interested in extending sections of $mK_{\mathcal{X}_0}+L$ (defined over the central fiber of the family $\mathcal{X}_0$) to sections of $mK_\mathcal{X}+L$. In this article we consider the following problem: to extend sections of $m(K_\mathcal{X}+L)$. More precisely, we show the following result: assuming the triviality of the multiplier ideal sheaf $\mathcal{I}(\mathcal{X}_0,h_{\vert \mathcal{X}_0})$, any section of $m(K_{\mathcal{X}_0}+L)$ extends to $\mathcal{X}$ ; in other words, the restriction map:\[H^0(\mathcal{X},m(K_{\mathcal{X}}+L))\rightarrow H^0(\mathcal{X}_0,m(K_{\mathcal{X}_0}+L))\]is surjective.At the end of this paper, we compare this result to the case of projective manifolds: in this situation an analogous statement (due to S. Takayama) is given to extend (twisted) pluricanonical sections. This lead us to discuss the different positivity assumptions required in extension results.
LA - eng
KW - Extensions of pluricanonical sections; invariance of plurigenera; pseudoeffective line bundle; singular metric; multiplier ideal sheaf; extensions of pluricanonical sections; pseudo-effective line bundle
UR - http://eudml.org/doc/10222
ER -
References
top- J.-P. Demailly, private communication
- J.-P. Demailly, T. Peternell, M. Schneider, Compact complex manifolds with numerically effective tangent bndles, J. Alg. Geom. 3 (1994), 295-345 Zbl0827.14027MR1257325
- T. Oshawa, K. Takegoshi, On the extension of holomorphic functions, Math. Z. 195 (1987), 197-204 Zbl0625.32011MR892051
- M. Paun, Siu’s Invariance of Plurigenera : a One-Tower Proof, preprint (2005) Zbl1122.32014
- Y.-T. Siu, Extension of pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, Complex Geometry (2002), 223-277, springer Zbl1007.32010MR1922108
- S. Takayama, Pluricanonical systems on algebraic varieties of general type, preprint (2005) Zbl1108.14031
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.