Small divisors and large multipliers

Boele Braaksma[1]; Laurent Stolovitch[2]

  • [1] University of Groningen Department of Mathematics P.O. Box 800 9700 AV Groningen (The Netherlands)
  • [2] CNRS UMR 5580 Université Paul Sabatier MIG, Laboratoire de Mathématiques Emile Picard 31062 Toulouse cedex 9 (France)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 2, page 603-628
  • ISSN: 0373-0956

Abstract

top
We study germs of singular holomorphic vector fields at the origin of n of which the linear part is 1 -resonant and which have a polynomial normal form. The formal normalizing diffeomorphism is usually divergent at the origin but there exists holomorphic diffeomorphisms in some “sectorial domains” which transform these vector fields into their normal form. In this article, we study the interplay between the small divisors phenomenon and the Gevrey character of the sectorial normalizing diffeomorphisms. We show that the Gevrey order of the latter is linked to the diophantine type of the small divisors.

How to cite

top

Braaksma, Boele, and Stolovitch, Laurent. "Small divisors and large multipliers." Annales de l’institut Fourier 57.2 (2007): 603-628. <http://eudml.org/doc/10233>.

@article{Braaksma2007,
abstract = {We study germs of singular holomorphic vector fields at the origin of $\mathbb\{C\}^n$ of which the linear part is $1$-resonant and which have a polynomial normal form. The formal normalizing diffeomorphism is usually divergent at the origin but there exists holomorphic diffeomorphisms in some “sectorial domains” which transform these vector fields into their normal form. In this article, we study the interplay between the small divisors phenomenon and the Gevrey character of the sectorial normalizing diffeomorphisms. We show that the Gevrey order of the latter is linked to the diophantine type of the small divisors.},
affiliation = {University of Groningen Department of Mathematics P.O. Box 800 9700 AV Groningen (The Netherlands); CNRS UMR 5580 Université Paul Sabatier MIG, Laboratoire de Mathématiques Emile Picard 31062 Toulouse cedex 9 (France)},
author = {Braaksma, Boele, Stolovitch, Laurent},
journal = {Annales de l’institut Fourier},
keywords = {Holomorphic dynamics; small divisors; normal forms; Gevrey functions; divergent series; holomorphic dynamics},
language = {eng},
number = {2},
pages = {603-628},
publisher = {Association des Annales de l’institut Fourier},
title = {Small divisors and large multipliers},
url = {http://eudml.org/doc/10233},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Braaksma, Boele
AU - Stolovitch, Laurent
TI - Small divisors and large multipliers
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 2
SP - 603
EP - 628
AB - We study germs of singular holomorphic vector fields at the origin of $\mathbb{C}^n$ of which the linear part is $1$-resonant and which have a polynomial normal form. The formal normalizing diffeomorphism is usually divergent at the origin but there exists holomorphic diffeomorphisms in some “sectorial domains” which transform these vector fields into their normal form. In this article, we study the interplay between the small divisors phenomenon and the Gevrey character of the sectorial normalizing diffeomorphisms. We show that the Gevrey order of the latter is linked to the diophantine type of the small divisors.
LA - eng
KW - Holomorphic dynamics; small divisors; normal forms; Gevrey functions; divergent series; holomorphic dynamics
UR - http://eudml.org/doc/10233
ER -

References

top
  1. V. Arnolʼd, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, (1980), Mir, Moscow Zbl0455.34001MR626685
  2. Werner Balser, Formal power series and linear systems of meromorphic ordinary differential equations, (2000), Springer-Verlag, New York Zbl0942.34004MR1722871
  3. Boele L. J. Braaksma, Transseries for a class of nonlinear difference equations, J. Differ. Equations Appl. 7 (2001), 717-750 Zbl1001.39002MR1871576
  4. A. D. Brjuno, Analytic form of differential equations, Trans. Mosc. Math. Soc. 25 (1971), 131-288; ibid. 26 (1972), p. 199–239 Zbl0283.34013MR377192
  5. Júlio Cesar Canille Martins, Holomorphic flows in C 3 , 0 with resonances, Trans. Amer. Math. Soc. 329 (1992), 825-837 Zbl0746.58068MR1073776
  6. Ovidiu Costin, On Borel summation and Stokes phenomena for rank- 1 nonlinear systems of ordinary differential equations, Duke Math. J. 93 (1998), 289-344 Zbl0948.34068MR1625999
  7. J. Écalle, Singularités non abordables par la géométrie, Ann. Inst. Fourier, Grenoble 42 (1992), 73-164 Zbl0940.32013MR1162558
  8. R. Gérard, Y. Sibuya, Étude de certains systèmes de Pfaff avec singularités, Lecture Note in Math., Springer-Verlag 712 (1979), 131-288 Zbl0455.35035MR548147
  9. Fumio Ichikawa, Finitely determined singularities of formal vector fields, Invent. Math. 66 (1982), 199-214 Zbl0491.58025MR656620
  10. G. Iooss, E. Lombardi, Polynomial normal forms with exponentially small remainder for analytic vector fields, J. Differential Equations 212 (2005), 1-61 Zbl1072.34039MR2130546
  11. P. Lochak, Simultaneous Diophantine approximation in classical pertubation theory: why and what for?, Progress in nonlinear science, Vol. 1 (Nizhny Novgorod, 2001) (2002), 116-138, RAS, Inst. Appl. Phys., Nizhniĭ Novgorod MR1965028
  12. B. Malgrange, Travaux d’Écalle et de Martinet-Ramis sur les systèmes dynamiques, Bourbaki Seminar, Vol. 1981/1982 92 (1982), 59-73, Soc. Math. France, Paris Zbl0526.58009MR689526
  13. Bernard Malgrange, Sommation des séries divergentes, Exposition. Math. 13 (1995), 163-222 Zbl0836.40004MR1346201
  14. Jean Martinet, Normalisation des champs de vecteurs holomorphes (d’après A.-D. Brjuno), Bourbaki Seminar, Vol. 1980/81 901 (1981), 55-70, Springer, Berlin Zbl0481.34013MR647488
  15. Jean Martinet, Jean-Pierre Ramis, Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Inst. Hautes Études Sci. Publ. Math. (1982), 63-164 Zbl0546.58038MR672182
  16. Jean Martinet, Jean-Pierre Ramis, Classification analytique des équations différentielles non linéaires résonnantes du premier ordre, Ann. Sci. École Norm. Sup. (4) 16 (1983), 571-621 (1984) Zbl0534.34011MR740592
  17. H. Poincaré, Les méthodes nouvelles de la mécanique céleste. Tome II, (1987), Librairie Scientifique et Technique Albert Blanchard, Paris Zbl0651.70002
  18. J.-P. Ramis, Les séries k -sommables et leurs applications, Complex analysis, microlocal calculus and relativistic quantum theory (Proc. Internat. Colloq., Centre Phys., Les Houches, 1979) 126 (1980), 178-199, Springer, Berlin Zbl1251.32008MR579749
  19. J.-P. Ramis, L. Stolovitch, Divergent series and holomorphic dynamical systems, (1993) 
  20. Jean-Pierre Ramis, Séries divergentes et théories asymptotiques, Panoramas et Synthèses 121 (1993), Société Mathématique de France Zbl0830.34045MR1272100
  21. Wolfgang M. Schmidt, Two questions in Diophantine approximation, Monatsh. Math. 82 (1976), 237-245 Zbl0337.10022MR429762
  22. Yasutaka Sibuya, Uniform multisummability and convergence of a power series, Funkcial. Ekvac. 47 (2004), 119-127 Zbl1222.35057MR2075291
  23. Carles Simó, Averaging under fast quasiperiodic forcing, Hamiltonian mechanics (Toruń, 1993) 331 (1994), 13-34, Plenum, New York MR1316666
  24. Laurent Stolovitch, Classification analytique de champs de vecteurs 1 -résonnants de ( C n , 0 ) , Asymptotic Anal. 12 (1996), 91-143 Zbl0852.58013MR1386227
  25. J.-Cl. Tougeron, Sur les ensembles semi-analytiques avec conditions Gevrey au bord, Ann. Sci. École Norm. Sup. (4) 27 (1994), 173-208 Zbl0803.32003MR1266469
  26. S. M. Voronin, Analytic classification of germs of conformal mappings ( C , 0 ) ( C , 0 ) with identity linear part, Funktsional. Anal. i Prilozhen. 15 (1981), 1-17 Zbl0463.30010MR609790

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.