Harmonic maps and representations of non-uniform lattices of PU ( m , 1 )

Vincent Koziarz[1]; Julien Maubon[1]

  • [1] Université Henri Poincaré Institut Elie Cartan BP 239 54506 Vandœuvre-lès-Nancy Cedex (France)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 2, page 507-558
  • ISSN: 0373-0956

Abstract

top
We study representations of lattices of PU ( m , 1 ) into PU ( n , 1 ) . We show that if a representation is reductive and if m is at least 2, then there exists a finite energy harmonic equivariant map from complex hyperbolic m -space to complex hyperbolic n -space. This allows us to give a differential geometric proof of rigidity results obtained by M. Burger and A. Iozzi. We also define a new invariant associated to representations into PU ( n , 1 ) of non-uniform lattices in PU ( 1 , 1 ) , and more generally of fundamental groups of orientable surfaces of finite topological type and negative Euler characteristic. We prove that this invariant is bounded by a constant depending only on the Euler characteristic of the surface and we give a complete characterization of representations with maximal invariant, thus generalizing the results of D. Toledo for uniform lattices.

How to cite

top

Koziarz, Vincent, and Maubon, Julien. "Harmonic maps and representations of non-uniform lattices of ${\rm PU}(m,1)$." Annales de l’institut Fourier 58.2 (2008): 507-558. <http://eudml.org/doc/10323>.

@article{Koziarz2008,
abstract = {We study representations of lattices of $\{\rm PU\}(m,1)$ into $\{\rm PU\}(n,1)$. We show that if a representation is reductive and if $m$ is at least 2, then there exists a finite energy harmonic equivariant map from complex hyperbolic $m$-space to complex hyperbolic $n$-space. This allows us to give a differential geometric proof of rigidity results obtained by M. Burger and A. Iozzi. We also define a new invariant associated to representations into $\{\rm PU\}(n,1)$ of non-uniform lattices in $\{\rm PU\}(1,1)$, and more generally of fundamental groups of orientable surfaces of finite topological type and negative Euler characteristic. We prove that this invariant is bounded by a constant depending only on the Euler characteristic of the surface and we give a complete characterization of representations with maximal invariant, thus generalizing the results of D. Toledo for uniform lattices.},
affiliation = {Université Henri Poincaré Institut Elie Cartan BP 239 54506 Vandœuvre-lès-Nancy Cedex (France); Université Henri Poincaré Institut Elie Cartan BP 239 54506 Vandœuvre-lès-Nancy Cedex (France)},
author = {Koziarz, Vincent, Maubon, Julien},
journal = {Annales de l’institut Fourier},
keywords = {Representations; non-uniform lattices; complex hyperbolic space; Toledo invariant; harmonic maps; surfaces of finite topological type; rigidity; representations; Toledo invariants},
language = {eng},
number = {2},
pages = {507-558},
publisher = {Association des Annales de l’institut Fourier},
title = {Harmonic maps and representations of non-uniform lattices of $\{\rm PU\}(m,1)$},
url = {http://eudml.org/doc/10323},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Koziarz, Vincent
AU - Maubon, Julien
TI - Harmonic maps and representations of non-uniform lattices of ${\rm PU}(m,1)$
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 2
SP - 507
EP - 558
AB - We study representations of lattices of ${\rm PU}(m,1)$ into ${\rm PU}(n,1)$. We show that if a representation is reductive and if $m$ is at least 2, then there exists a finite energy harmonic equivariant map from complex hyperbolic $m$-space to complex hyperbolic $n$-space. This allows us to give a differential geometric proof of rigidity results obtained by M. Burger and A. Iozzi. We also define a new invariant associated to representations into ${\rm PU}(n,1)$ of non-uniform lattices in ${\rm PU}(1,1)$, and more generally of fundamental groups of orientable surfaces of finite topological type and negative Euler characteristic. We prove that this invariant is bounded by a constant depending only on the Euler characteristic of the surface and we give a complete characterization of representations with maximal invariant, thus generalizing the results of D. Toledo for uniform lattices.
LA - eng
KW - Representations; non-uniform lattices; complex hyperbolic space; Toledo invariant; harmonic maps; surfaces of finite topological type; rigidity; representations; Toledo invariants
UR - http://eudml.org/doc/10323
ER -

References

top
  1. Louis Auslander, Bieberbach’s theorems on space groups and discrete uniform subgroups of Lie groups, Ann. of Math. (2) 71 (1960), 579-590 Zbl0099.25602
  2. Olivier Biquard, Métriques d’Einstein à cusps et équations de Seiberg-Witten, J. Reine Angew. Math. 490 (1997), 129-154 Zbl0891.53029
  3. M. Burger, A. Iozzi, Bounded cohomology and representation varieties of lattices in PSU ( 1 , n ) , (2001) 
  4. M. Burger, A. Iozzi, Letter (2003) 
  5. M. Burger, N. Monod, Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal. 12 (2002), 219-280 Zbl1006.22010MR1911660
  6. James A. Carlson, Domingo Toledo, Harmonic mappings of Kähler manifolds to locally symmetric spaces, Inst. Hautes Études Sci. Publ. Math. (1989), 173-201 Zbl0695.58010MR1019964
  7. Kevin Corlette, Flat G -bundles with canonical metrics, J. Differential Geom. 28 (1988), 361-382 Zbl0676.58007MR965220
  8. Kevin Corlette, Archimedean superrigidity and hyperbolic geometry, Ann. of Math. (2) 135 (1992), 165-182 Zbl0768.53025MR1147961
  9. James Eells, J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160 Zbl0122.40102MR164306
  10. Matthew P. Gaffney, A special Stokes’s theorem for complete Riemannian manifolds, Ann. of Math. (2) 60 (1954), 140-145 Zbl0055.40301
  11. W. M. Goldman, J. J. Millson, Local rigidity of discrete groups acting on complex hyperbolic space, Invent. Math. 88 (1987), 495-520 Zbl0627.22012MR884798
  12. William M. Goldman, Representations of fundamental groups of surfaces, Geometry and topology (College Park, Md., 1983/84) 1167 (1985), 95-117, Springer, Berlin Zbl0575.57027MR827264
  13. William M. Goldman, Complex hyperbolic geometry, (1999), The Clarendon Press Oxford University Press, New York Zbl0939.32024MR1695450
  14. Mikhail Gromov, Richard Schoen, Harmonic maps into singular spaces and p -adic superrigidity for lattices in groups of rank one, Inst. Hautes Études Sci. Publ. Math. (1992), 165-246 Zbl0896.58024MR1215595
  15. Nikolay Gusevskii, John R. Parker, Representations of free Fuchsian groups in complex hyperbolic space, Topology 39 (2000), 33-60 Zbl0977.32017MR1710991
  16. Nikolay Gusevskii, John R. Parker, Complex hyperbolic quasi-Fuchsian groups and Toledo’s invariant, Geom. Dedicata 97 (2003), 151-185 Zbl1042.57023
  17. Sigurdur Helgason, Groups and geometric analysis, 113 (1984), Academic Press Inc., Orlando, FL Zbl0543.58001MR754767
  18. Luis Hernández, Kähler manifolds and 1 / 4 -pinching, Duke Math. J. 62 (1991), 601-611 Zbl0725.53068MR1104810
  19. Christoph Hummel, Viktor Schroeder, Cusp closing in rank one symmetric spaces, Invent. Math. 123 (1996), 283-307 Zbl0860.53025MR1374201
  20. Alessandra Iozzi, Bounded cohomology, boundary maps, and rigidity of representations into Homeo + ( S 1 ) and SU ( 1 , n ) , Rigidity in dynamics and geometry (Cambridge, 2000) (2002), 237-260, Springer, Berlin Zbl1012.22023MR1919404
  21. Dennis Johnson, John J. Millson, Deformation spaces associated to compact hyperbolic manifolds, Discrete groups in geometry and analysis (New Haven, Conn., 1984) 67 (1987), 48-106, Birkhäuser Boston, Boston, MA Zbl0664.53023MR900823
  22. Jürgen Jost, Kang Zuo, Harmonic maps of infinite energy and rigidity results for representations of fundamental groups of quasiprojective varieties, J. Differential Geom. 47 (1997), 469-503 Zbl0911.58012MR1617644
  23. M. Kapovich, On normal subgroups in the fundamental groups of complex surfaces, arXiv:math.GT/9808085 
  24. Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, 2 (1970), Marcel Dekker, New York Zbl0207.37902MR277770
  25. Peter Li, Complete surfaces of at most quadratic area growth, Comment. Math. Helv. 72 (1997), 67-71 Zbl1008.53034MR1456316
  26. André Lichnerowicz, Applications harmoniques et variétés kähleriennes, Symposia Mathematica, Vol. III (INDAM, Rome, 1968/69) (1968/1969), 341-402, Academic Press, London Zbl0193.50101MR262993
  27. R. Livné, On certain covers of the universal elliptic curve, (1981) 
  28. G. A. Margulis, Discrete subgroups of semisimple Lie groups, 17 (1991), Springer-Verlag, Berlin Zbl0732.22008MR1090825
  29. Ngaiming Mok, Yum Tong Siu, Sai-Kee Yeung, Geometric superrigidity, Invent. Math. 113 (1993), 57-83 Zbl0808.53043MR1223224
  30. G. D. Mostow, Strong rigidity of locally symmetric spaces, (1973), Princeton University Press, Princeton, N.J. Zbl0265.53039MR385004
  31. Pierre Pansu, Sous-groupes discrets des groupes de Lie: rigidité, arithméticité, Astérisque (1995), 69-105 Zbl0835.22011MR1321644
  32. Alexander G. Reznikov, Harmonic maps, hyperbolic cohomology and higher Milnor inequalities, Topology 32 (1993), 899-907 Zbl0804.57013MR1241878
  33. J. H. Sampson, Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. (4) 11 (1978), 211-228 Zbl0392.31009MR510549
  34. Richard Schoen, Shing Tung Yau, On univalent harmonic maps between surfaces, Invent. Math. 44 (1978), 265-278 Zbl0388.58005MR478219
  35. Jean-Pierre Serre, Arbres, amalgames, SL 2 , (1977), Société Mathématique de France, Paris MR476875
  36. Yum Tong Siu, The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, Ann. of Math. (2) 112 (1980), 73-111 Zbl0517.53058MR584075
  37. Domingo Toledo, Harmonic maps from surfaces to certain Kaehler manifolds, Math. Scand. 45 (1979), 13-26 Zbl0435.58008MR567429
  38. Domingo Toledo, Representations of surface groups in complex hyperbolic space, J. Diff. Geom. 29 (1989), 125-133 Zbl0676.57012MR978081
  39. John C. Wood, Holomorphicity of certain harmonic maps from a surface to complex projective n -space, J. London Math. Soc. (2) 20 (1979), 137-142 Zbl0407.58026MR545210
  40. Steven Zucker, L 2 cohomology of warped products and arithmetic groups, Invent. Math. 70 (1982/83), 169-218 Zbl0508.20020MR684171

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.