Harmonic maps and representations of non-uniform lattices of
Vincent Koziarz[1]; Julien Maubon[1]
- [1] Université Henri Poincaré Institut Elie Cartan BP 239 54506 Vandœuvre-lès-Nancy Cedex (France)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 2, page 507-558
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKoziarz, Vincent, and Maubon, Julien. "Harmonic maps and representations of non-uniform lattices of ${\rm PU}(m,1)$." Annales de l’institut Fourier 58.2 (2008): 507-558. <http://eudml.org/doc/10323>.
@article{Koziarz2008,
abstract = {We study representations of lattices of $\{\rm PU\}(m,1)$ into $\{\rm PU\}(n,1)$. We show that if a representation is reductive and if $m$ is at least 2, then there exists a finite energy harmonic equivariant map from complex hyperbolic $m$-space to complex hyperbolic $n$-space. This allows us to give a differential geometric proof of rigidity results obtained by M. Burger and A. Iozzi. We also define a new invariant associated to representations into $\{\rm PU\}(n,1)$ of non-uniform lattices in $\{\rm PU\}(1,1)$, and more generally of fundamental groups of orientable surfaces of finite topological type and negative Euler characteristic. We prove that this invariant is bounded by a constant depending only on the Euler characteristic of the surface and we give a complete characterization of representations with maximal invariant, thus generalizing the results of D. Toledo for uniform lattices.},
affiliation = {Université Henri Poincaré Institut Elie Cartan BP 239 54506 Vandœuvre-lès-Nancy Cedex (France); Université Henri Poincaré Institut Elie Cartan BP 239 54506 Vandœuvre-lès-Nancy Cedex (France)},
author = {Koziarz, Vincent, Maubon, Julien},
journal = {Annales de l’institut Fourier},
keywords = {Representations; non-uniform lattices; complex hyperbolic space; Toledo invariant; harmonic maps; surfaces of finite topological type; rigidity; representations; Toledo invariants},
language = {eng},
number = {2},
pages = {507-558},
publisher = {Association des Annales de l’institut Fourier},
title = {Harmonic maps and representations of non-uniform lattices of $\{\rm PU\}(m,1)$},
url = {http://eudml.org/doc/10323},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Koziarz, Vincent
AU - Maubon, Julien
TI - Harmonic maps and representations of non-uniform lattices of ${\rm PU}(m,1)$
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 2
SP - 507
EP - 558
AB - We study representations of lattices of ${\rm PU}(m,1)$ into ${\rm PU}(n,1)$. We show that if a representation is reductive and if $m$ is at least 2, then there exists a finite energy harmonic equivariant map from complex hyperbolic $m$-space to complex hyperbolic $n$-space. This allows us to give a differential geometric proof of rigidity results obtained by M. Burger and A. Iozzi. We also define a new invariant associated to representations into ${\rm PU}(n,1)$ of non-uniform lattices in ${\rm PU}(1,1)$, and more generally of fundamental groups of orientable surfaces of finite topological type and negative Euler characteristic. We prove that this invariant is bounded by a constant depending only on the Euler characteristic of the surface and we give a complete characterization of representations with maximal invariant, thus generalizing the results of D. Toledo for uniform lattices.
LA - eng
KW - Representations; non-uniform lattices; complex hyperbolic space; Toledo invariant; harmonic maps; surfaces of finite topological type; rigidity; representations; Toledo invariants
UR - http://eudml.org/doc/10323
ER -
References
top- Louis Auslander, Bieberbach’s theorems on space groups and discrete uniform subgroups of Lie groups, Ann. of Math. (2) 71 (1960), 579-590 Zbl0099.25602
- Olivier Biquard, Métriques d’Einstein à cusps et équations de Seiberg-Witten, J. Reine Angew. Math. 490 (1997), 129-154 Zbl0891.53029
- M. Burger, A. Iozzi, Bounded cohomology and representation varieties of lattices in PSU, (2001)
- M. Burger, A. Iozzi, Letter (2003)
- M. Burger, N. Monod, Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal. 12 (2002), 219-280 Zbl1006.22010MR1911660
- James A. Carlson, Domingo Toledo, Harmonic mappings of Kähler manifolds to locally symmetric spaces, Inst. Hautes Études Sci. Publ. Math. (1989), 173-201 Zbl0695.58010MR1019964
- Kevin Corlette, Flat -bundles with canonical metrics, J. Differential Geom. 28 (1988), 361-382 Zbl0676.58007MR965220
- Kevin Corlette, Archimedean superrigidity and hyperbolic geometry, Ann. of Math. (2) 135 (1992), 165-182 Zbl0768.53025MR1147961
- James Eells, J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160 Zbl0122.40102MR164306
- Matthew P. Gaffney, A special Stokes’s theorem for complete Riemannian manifolds, Ann. of Math. (2) 60 (1954), 140-145 Zbl0055.40301
- W. M. Goldman, J. J. Millson, Local rigidity of discrete groups acting on complex hyperbolic space, Invent. Math. 88 (1987), 495-520 Zbl0627.22012MR884798
- William M. Goldman, Representations of fundamental groups of surfaces, Geometry and topology (College Park, Md., 1983/84) 1167 (1985), 95-117, Springer, Berlin Zbl0575.57027MR827264
- William M. Goldman, Complex hyperbolic geometry, (1999), The Clarendon Press Oxford University Press, New York Zbl0939.32024MR1695450
- Mikhail Gromov, Richard Schoen, Harmonic maps into singular spaces and -adic superrigidity for lattices in groups of rank one, Inst. Hautes Études Sci. Publ. Math. (1992), 165-246 Zbl0896.58024MR1215595
- Nikolay Gusevskii, John R. Parker, Representations of free Fuchsian groups in complex hyperbolic space, Topology 39 (2000), 33-60 Zbl0977.32017MR1710991
- Nikolay Gusevskii, John R. Parker, Complex hyperbolic quasi-Fuchsian groups and Toledo’s invariant, Geom. Dedicata 97 (2003), 151-185 Zbl1042.57023
- Sigurdur Helgason, Groups and geometric analysis, 113 (1984), Academic Press Inc., Orlando, FL Zbl0543.58001MR754767
- Luis Hernández, Kähler manifolds and -pinching, Duke Math. J. 62 (1991), 601-611 Zbl0725.53068MR1104810
- Christoph Hummel, Viktor Schroeder, Cusp closing in rank one symmetric spaces, Invent. Math. 123 (1996), 283-307 Zbl0860.53025MR1374201
- Alessandra Iozzi, Bounded cohomology, boundary maps, and rigidity of representations into and , Rigidity in dynamics and geometry (Cambridge, 2000) (2002), 237-260, Springer, Berlin Zbl1012.22023MR1919404
- Dennis Johnson, John J. Millson, Deformation spaces associated to compact hyperbolic manifolds, Discrete groups in geometry and analysis (New Haven, Conn., 1984) 67 (1987), 48-106, Birkhäuser Boston, Boston, MA Zbl0664.53023MR900823
- Jürgen Jost, Kang Zuo, Harmonic maps of infinite energy and rigidity results for representations of fundamental groups of quasiprojective varieties, J. Differential Geom. 47 (1997), 469-503 Zbl0911.58012MR1617644
- M. Kapovich, On normal subgroups in the fundamental groups of complex surfaces, arXiv:math.GT/9808085
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, 2 (1970), Marcel Dekker, New York Zbl0207.37902MR277770
- Peter Li, Complete surfaces of at most quadratic area growth, Comment. Math. Helv. 72 (1997), 67-71 Zbl1008.53034MR1456316
- André Lichnerowicz, Applications harmoniques et variétés kähleriennes, Symposia Mathematica, Vol. III (INDAM, Rome, 1968/69) (1968/1969), 341-402, Academic Press, London Zbl0193.50101MR262993
- R. Livné, On certain covers of the universal elliptic curve, (1981)
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, 17 (1991), Springer-Verlag, Berlin Zbl0732.22008MR1090825
- Ngaiming Mok, Yum Tong Siu, Sai-Kee Yeung, Geometric superrigidity, Invent. Math. 113 (1993), 57-83 Zbl0808.53043MR1223224
- G. D. Mostow, Strong rigidity of locally symmetric spaces, (1973), Princeton University Press, Princeton, N.J. Zbl0265.53039MR385004
- Pierre Pansu, Sous-groupes discrets des groupes de Lie: rigidité, arithméticité, Astérisque (1995), 69-105 Zbl0835.22011MR1321644
- Alexander G. Reznikov, Harmonic maps, hyperbolic cohomology and higher Milnor inequalities, Topology 32 (1993), 899-907 Zbl0804.57013MR1241878
- J. H. Sampson, Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. (4) 11 (1978), 211-228 Zbl0392.31009MR510549
- Richard Schoen, Shing Tung Yau, On univalent harmonic maps between surfaces, Invent. Math. 44 (1978), 265-278 Zbl0388.58005MR478219
- Jean-Pierre Serre, Arbres, amalgames, , (1977), Société Mathématique de France, Paris MR476875
- Yum Tong Siu, The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, Ann. of Math. (2) 112 (1980), 73-111 Zbl0517.53058MR584075
- Domingo Toledo, Harmonic maps from surfaces to certain Kaehler manifolds, Math. Scand. 45 (1979), 13-26 Zbl0435.58008MR567429
- Domingo Toledo, Representations of surface groups in complex hyperbolic space, J. Diff. Geom. 29 (1989), 125-133 Zbl0676.57012MR978081
- John C. Wood, Holomorphicity of certain harmonic maps from a surface to complex projective -space, J. London Math. Soc. (2) 20 (1979), 137-142 Zbl0407.58026MR545210
- Steven Zucker, cohomology of warped products and arithmetic groups, Invent. Math. 70 (1982/83), 169-218 Zbl0508.20020MR684171
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.