de Rham Theory for Tame Stacks and Schemes with Linearly Reductive Singularities

Matthew Satriano[1]

  • [1] University of Michigan Department of Mathematics 2074 East Hall, Ann Arbor, MI 48109-1043 (USA)

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 6, page 2013-2051
  • ISSN: 0373-0956

Abstract

top
We prove that the Hodge-de Rham spectral sequence for smooth proper tame Artin stacks in characteristic p (as defined by Abramovich, Olsson, and Vistoli) which lift mod p 2 degenerates. We push the result to the coarse spaces of such stacks, thereby obtaining a degeneracy result for schemes which are étale locally the quotient of a smooth scheme by a finite linearly reductive group scheme.

How to cite

top

Satriano, Matthew. "de Rham Theory for Tame Stacks and Schemes with Linearly Reductive Singularities." Annales de l’institut Fourier 62.6 (2012): 2013-2051. <http://eudml.org/doc/251087>.

@article{Satriano2012,
abstract = {We prove that the Hodge-de Rham spectral sequence for smooth proper tame Artin stacks in characteristic $p$ (as defined by Abramovich, Olsson, and Vistoli) which lift mod $p^2$ degenerates. We push the result to the coarse spaces of such stacks, thereby obtaining a degeneracy result for schemes which are étale locally the quotient of a smooth scheme by a finite linearly reductive group scheme.},
affiliation = {University of Michigan Department of Mathematics 2074 East Hall, Ann Arbor, MI 48109-1043 (USA)},
author = {Satriano, Matthew},
journal = {Annales de l’institut Fourier},
keywords = {de Rham; Hodge; tame stack; linearly reductive},
language = {eng},
number = {6},
pages = {2013-2051},
publisher = {Association des Annales de l’institut Fourier},
title = {de Rham Theory for Tame Stacks and Schemes with Linearly Reductive Singularities},
url = {http://eudml.org/doc/251087},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Satriano, Matthew
TI - de Rham Theory for Tame Stacks and Schemes with Linearly Reductive Singularities
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 6
SP - 2013
EP - 2051
AB - We prove that the Hodge-de Rham spectral sequence for smooth proper tame Artin stacks in characteristic $p$ (as defined by Abramovich, Olsson, and Vistoli) which lift mod $p^2$ degenerates. We push the result to the coarse spaces of such stacks, thereby obtaining a degeneracy result for schemes which are étale locally the quotient of a smooth scheme by a finite linearly reductive group scheme.
LA - eng
KW - de Rham; Hodge; tame stack; linearly reductive
UR - http://eudml.org/doc/251087
ER -

References

top
  1. Dan Abramovich, Martin Olsson, Angelo Vistoli, Tame stacks in positive characteristic, Ann. Inst. Fourier (Grenoble) 58 (2008), 1057-1091 Zbl1222.14004MR2427954
  2. Dan Abramovich, Angelo Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002), 27-75 (electronic) Zbl0991.14007MR1862797
  3. K. Behrend, Cohomology of stacks, Intersection theory and moduli (2004), 249-294 (electronic), Abdus Salam Int. Cent. Theoret. Phys., Trieste Zbl1081.58003MR2172499
  4. Brian Conrad, Cohomological descent, (2009) 
  5. Pierre Deligne, Luc Illusie, Relèvements modulo p 2 et décomposition du complexe de de Rham, Invent. Math. 89 (1987), 247-270 Zbl0632.14017MR894379
  6. Gerd Faltings, p -adic Hodge theory, J. Amer. Math. Soc. 1 (1988), 255-299 Zbl0764.14012MR924705
  7. Barbara Fantechi, Etienne Mann, Fabio Nironi, Smooth toric DM stacks, (2009) Zbl1211.14009
  8. Melvin Hochster, Joel L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115-175 Zbl0289.14010MR347810
  9. Luc Illusie, Complexe cotangent et déformations. I, (1971), Springer-Verlag, Berlin Zbl0224.13014MR491680
  10. Nicholas M. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. (1970), 175-232 Zbl0221.14007MR291177
  11. Seán Keel, Shigefumi Mori, Quotients by groupoids, Ann. of Math. (2) 145 (1997), 193-213 Zbl0881.14018MR1432041
  12. Gérard Laumon, Laurent Moret-Bailly, Champs algébriques, 39 (2000), Springer-Verlag, Berlin Zbl0945.14005MR1771927
  13. Kenji Matsuki, Martin Olsson, Kawamata-Viehweg vanishing as Kodaira vanishing for stacks, Math. Res. Lett. 12 (2005), 207-217 Zbl1080.14023MR2150877
  14. D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, 34 (1994), Springer-Verlag, Berlin Zbl0797.14004MR1304906
  15. Martin C. Olsson, Hom ̲ -stacks and restriction of scalars, Duke Math. J. 134 (2006), 139-164 Zbl1114.14002MR2239345
  16. Martin C. Olsson, Sheaves on Artin stacks, J. Reine Angew. Math. 603 (2007), 55-112 Zbl1137.14004MR2312554
  17. Matthew Satriano, A generalization of the Chevalley-Shephard-Todd theorem to the case of linearly reductive group schemes, (2009) Zbl1252.14002
  18. J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) (1977), 525-563, Sijthoff and Noordhoff, Alphen aan den Rijn Zbl0373.14007MR485870
  19. B. Toen, K-théorie et cohomologie des champs algébriques: Théorèmes de Riemann-Roch, D-modules et théorèmes GAGA, (1999) 
  20. Angelo Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989), 613-670 Zbl0694.14001MR1005008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.