de Rham Theory for Tame Stacks and Schemes with Linearly Reductive Singularities
- [1] University of Michigan Department of Mathematics 2074 East Hall, Ann Arbor, MI 48109-1043 (USA)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 6, page 2013-2051
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSatriano, Matthew. "de Rham Theory for Tame Stacks and Schemes with Linearly Reductive Singularities." Annales de l’institut Fourier 62.6 (2012): 2013-2051. <http://eudml.org/doc/251087>.
@article{Satriano2012,
abstract = {We prove that the Hodge-de Rham spectral sequence for smooth proper tame Artin stacks in characteristic $p$ (as defined by Abramovich, Olsson, and Vistoli) which lift mod $p^2$ degenerates. We push the result to the coarse spaces of such stacks, thereby obtaining a degeneracy result for schemes which are étale locally the quotient of a smooth scheme by a finite linearly reductive group scheme.},
affiliation = {University of Michigan Department of Mathematics 2074 East Hall, Ann Arbor, MI 48109-1043 (USA)},
author = {Satriano, Matthew},
journal = {Annales de l’institut Fourier},
keywords = {de Rham; Hodge; tame stack; linearly reductive},
language = {eng},
number = {6},
pages = {2013-2051},
publisher = {Association des Annales de l’institut Fourier},
title = {de Rham Theory for Tame Stacks and Schemes with Linearly Reductive Singularities},
url = {http://eudml.org/doc/251087},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Satriano, Matthew
TI - de Rham Theory for Tame Stacks and Schemes with Linearly Reductive Singularities
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 6
SP - 2013
EP - 2051
AB - We prove that the Hodge-de Rham spectral sequence for smooth proper tame Artin stacks in characteristic $p$ (as defined by Abramovich, Olsson, and Vistoli) which lift mod $p^2$ degenerates. We push the result to the coarse spaces of such stacks, thereby obtaining a degeneracy result for schemes which are étale locally the quotient of a smooth scheme by a finite linearly reductive group scheme.
LA - eng
KW - de Rham; Hodge; tame stack; linearly reductive
UR - http://eudml.org/doc/251087
ER -
References
top- Dan Abramovich, Martin Olsson, Angelo Vistoli, Tame stacks in positive characteristic, Ann. Inst. Fourier (Grenoble) 58 (2008), 1057-1091 Zbl1222.14004MR2427954
- Dan Abramovich, Angelo Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002), 27-75 (electronic) Zbl0991.14007MR1862797
- K. Behrend, Cohomology of stacks, Intersection theory and moduli (2004), 249-294 (electronic), Abdus Salam Int. Cent. Theoret. Phys., Trieste Zbl1081.58003MR2172499
- Brian Conrad, Cohomological descent, (2009)
- Pierre Deligne, Luc Illusie, Relèvements modulo et décomposition du complexe de de Rham, Invent. Math. 89 (1987), 247-270 Zbl0632.14017MR894379
- Gerd Faltings, -adic Hodge theory, J. Amer. Math. Soc. 1 (1988), 255-299 Zbl0764.14012MR924705
- Barbara Fantechi, Etienne Mann, Fabio Nironi, Smooth toric DM stacks, (2009) Zbl1211.14009
- Melvin Hochster, Joel L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115-175 Zbl0289.14010MR347810
- Luc Illusie, Complexe cotangent et déformations. I, (1971), Springer-Verlag, Berlin Zbl0224.13014MR491680
- Nicholas M. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. (1970), 175-232 Zbl0221.14007MR291177
- Seán Keel, Shigefumi Mori, Quotients by groupoids, Ann. of Math. (2) 145 (1997), 193-213 Zbl0881.14018MR1432041
- Gérard Laumon, Laurent Moret-Bailly, Champs algébriques, 39 (2000), Springer-Verlag, Berlin Zbl0945.14005MR1771927
- Kenji Matsuki, Martin Olsson, Kawamata-Viehweg vanishing as Kodaira vanishing for stacks, Math. Res. Lett. 12 (2005), 207-217 Zbl1080.14023MR2150877
- D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, 34 (1994), Springer-Verlag, Berlin Zbl0797.14004MR1304906
- Martin C. Olsson, -stacks and restriction of scalars, Duke Math. J. 134 (2006), 139-164 Zbl1114.14002MR2239345
- Martin C. Olsson, Sheaves on Artin stacks, J. Reine Angew. Math. 603 (2007), 55-112 Zbl1137.14004MR2312554
- Matthew Satriano, A generalization of the Chevalley-Shephard-Todd theorem to the case of linearly reductive group schemes, (2009) Zbl1252.14002
- J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) (1977), 525-563, Sijthoff and Noordhoff, Alphen aan den Rijn Zbl0373.14007MR485870
- B. Toen, K-théorie et cohomologie des champs algébriques: Théorèmes de Riemann-Roch, D-modules et théorèmes GAGA, (1999)
- Angelo Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989), 613-670 Zbl0694.14001MR1005008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.