The Nash problem of arcs and the rational double points D n

Camille Plénat[1]

  • [1] Université de Provence LATP UMR 6632 Centre de Mathématiques et Informatique 39 rue Joliot-Curie 13453 Marseille cedex 13 (France)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 7, page 2249-2278
  • ISSN: 0373-0956

Abstract

top
This paper deals with the Nash problem, which consists in comparing the number of families of arcs on a singular germ of surface U with the number of essential components of the exceptional divisor in the minimal resolution of this singularity. We prove their equality in the case of the rational double points D n ( n 4 ).

How to cite

top

Plénat, Camille. "The Nash problem of arcs and the rational double points $D_n$." Annales de l’institut Fourier 58.7 (2008): 2249-2278. <http://eudml.org/doc/10377>.

@article{Plénat2008,
abstract = {This paper deals with the Nash problem, which consists in comparing the number of families of arcs on a singular germ of surface $U$ with the number of essential components of the exceptional divisor in the minimal resolution of this singularity. We prove their equality in the case of the rational double points $D_n$ ($n \ge 4$).},
affiliation = {Université de Provence LATP UMR 6632 Centre de Mathématiques et Informatique 39 rue Joliot-Curie 13453 Marseille cedex 13 (France)},
author = {Plénat, Camille},
journal = {Annales de l’institut Fourier},
keywords = {Space of arcs; Nash map; Nash problem; rational double points; space of arcs},
language = {eng},
number = {7},
pages = {2249-2278},
publisher = {Association des Annales de l’institut Fourier},
title = {The Nash problem of arcs and the rational double points $D_n$},
url = {http://eudml.org/doc/10377},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Plénat, Camille
TI - The Nash problem of arcs and the rational double points $D_n$
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 7
SP - 2249
EP - 2278
AB - This paper deals with the Nash problem, which consists in comparing the number of families of arcs on a singular germ of surface $U$ with the number of essential components of the exceptional divisor in the minimal resolution of this singularity. We prove their equality in the case of the rational double points $D_n$ ($n \ge 4$).
LA - eng
KW - Space of arcs; Nash map; Nash problem; rational double points; space of arcs
UR - http://eudml.org/doc/10377
ER -

References

top
  1. M. Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129-136 Zbl0142.18602MR199191
  2. C. Bouvier, Diviseurs essentiels, composantes essentielles des variétés toriques singulières, Duke Math. J. 91 (1998), 609-620 Zbl0966.14038MR1604179
  3. C. Bouvier, G. Gonzales-Sprinberg, Système générateur minimal, diviseurs essentiels et G-désingularisations de varitétés toriques, Tohoku Math. J. 47 (1995), 125-149 Zbl0823.14006MR1311446
  4. D. Eisenbud, Commutative Algebra with a view toward Algebraic Geometry, 150 (1995), Springer-Verlag, New York Zbl0819.13001MR1322960
  5. J. Fernandez-Sanchez, Equivalence of the Nash conjecture for primitive and sandwiched singularities, Proc. Amer. Math. Soc. 133 (2005), 677-679 Zbl1056.14004MR2113914
  6. S. Ishii, Arcs, valuations and the Nash map, arXiv: math.AG/0410526 Zbl1082.14007
  7. S. Ishii, The local Nash problem on arc families of singularities, arXiv: math.AG/0507530 Zbl1116.14030
  8. S. Ishii, J. Kollár, The Nash problem on arc families of singularities, Duke Math. J. 120, 3 (2003), 601-620 Zbl1052.14011MR2030097
  9. M. Lejeune–Jalabert, Arcs analytiques et résolution minimale des singularités des surfaces quasi-homogènes, Séminaire sur les Singularités des Surfaces, Lecture Notes in Math. 777 (1980), 303-336, Springer-Verlag Zbl0432.14020
  10. M. Lejeune–Jalabert, Désingularisation explicite des surfaces quasi-homogènes dans 3 , Nova Acta Leopoldina NF 52, Nr 240 (1981), 139-160 Zbl0474.14021MR642702
  11. M. Lejeune–Jalabert, Courbes tracées sur un germe d’hypersurface, Amer. J. Math. 112 (1990), 525-568 Zbl0743.14002
  12. M. Lejeune–Jalabert, A. Reguera, Arcs and wedges on sandwiched surface singularities, Amer. J. Math. 121 (1999), 1191-1213 Zbl0960.14015MR1719822
  13. H. Matsumura, Commutative ring theory. Translated from the Japanese by M. Reid, 8 (1986), Cambridge University Press, Cambridge Zbl0603.13001MR879273
  14. J. F. Jr. Nash, Arc structure of singularities, A celebration of John F. Nash, Jr. Duke Math. J. 81, 1 (1995), 31-38 Zbl0880.14010MR1381967
  15. C. Plénat, A propos du problème des arcs de Nash, Annales de l’Institut Fourier 55 (2005), 805-823 Zbl1080.14021
  16. C. Plénat, Résolution du problème des arcs de Nash pour les points doubles rationnels D n ( n 4 ) ., Note C.R.A.S, Série I 340 (2005), 747-750 Zbl1072.14004MR2141063
  17. C. Plénat, P. Popescu-Pampu, A class of non-rational surface singularities for which the Nash map is bijective, Bulletin de la SMF 134 (2006), 383-394 Zbl1119.14007MR2245998
  18. A. Reguera, Families of arcs on rational surface singularities, Manuscripta Math 88, 3 (1995), 321-333 Zbl0867.14012MR1359701
  19. A. Reguera, Image of the Nash map in terms of wedges, C. R. Acad. Sci. Paris, Ser. I 338 (2004), 385-390 Zbl1044.14032MR2057169

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.