A class of non-rational surface singularities with bijective Nash map

Camille Plénat; Patrick Popescu-Pampu

Bulletin de la Société Mathématique de France (2006)

  • Volume: 134, Issue: 3, page 383-394
  • ISSN: 0037-9484

Abstract

top
Let ( 𝒮 , 0 ) be a germ of complex analytic normal surface. On its minimal resolution, we consider the reduced exceptional divisor E and its irreducible components E i , i I . The Nash map associates to each irreducible component C k of the space of arcs through 0 on 𝒮 the unique component of E cut by the strict transform of the generic arc in C k . Nash proved its injectivity and asked if it was bijective. As a particular case of our main theorem, we prove that this is the case if E · E i < 0 for any  i I .

How to cite

top

Plénat, Camille, and Popescu-Pampu, Patrick. "A class of non-rational surface singularities with bijective Nash map." Bulletin de la Société Mathématique de France 134.3 (2006): 383-394. <http://eudml.org/doc/272440>.

@article{Plénat2006,
abstract = {Let $(\mathcal \{S\},0)$ be a germ of complex analytic normal surface. On its minimal resolution, we consider the reduced exceptional divisor $E$ and its irreducible components $E_\{i\}$, $i \in I$. The Nash map associates to each irreducible component $C_k$ of the space of arcs through $0$ on $\mathcal \{S\}$ the unique component of $E$ cut by the strict transform of the generic arc in $C_k$. Nash proved its injectivity and asked if it was bijective. As a particular case of our main theorem, we prove that this is the case if $E\cdot E_\{i\} &lt;0$ for any $\{i \in I\}$.},
author = {Plénat, Camille, Popescu-Pampu, Patrick},
journal = {Bulletin de la Société Mathématique de France},
keywords = {space of arcs; Nash map; Nash problem},
language = {eng},
number = {3},
pages = {383-394},
publisher = {Société mathématique de France},
title = {A class of non-rational surface singularities with bijective Nash map},
url = {http://eudml.org/doc/272440},
volume = {134},
year = {2006},
}

TY - JOUR
AU - Plénat, Camille
AU - Popescu-Pampu, Patrick
TI - A class of non-rational surface singularities with bijective Nash map
JO - Bulletin de la Société Mathématique de France
PY - 2006
PB - Société mathématique de France
VL - 134
IS - 3
SP - 383
EP - 394
AB - Let $(\mathcal {S},0)$ be a germ of complex analytic normal surface. On its minimal resolution, we consider the reduced exceptional divisor $E$ and its irreducible components $E_{i}$, $i \in I$. The Nash map associates to each irreducible component $C_k$ of the space of arcs through $0$ on $\mathcal {S}$ the unique component of $E$ cut by the strict transform of the generic arc in $C_k$. Nash proved its injectivity and asked if it was bijective. As a particular case of our main theorem, we prove that this is the case if $E\cdot E_{i} &lt;0$ for any ${i \in I}$.
LA - eng
KW - space of arcs; Nash map; Nash problem
UR - http://eudml.org/doc/272440
ER -

References

top
  1. [1] L. Bădescu – Algebraic Surfaces, Springer, 2001. Zbl0965.14001MR1805816
  2. [2] C. Caubel, A. Némethi & P. Popescu-Pampu – « Milnor open books and Milnor fillable contact 3-manifolds », Topology45 (2006), p. 673–689. Zbl1098.53064MR2218761
  3. [3] C. Caubel & P. Popescu-Pampu – « On the contact boundaries of normal surface singularities », C. R. Acad. Sci. Paris, Sér.I 339 (2004), p. 43–48. Zbl1080.32025MR2075231
  4. [4] J. Fernández-Sánchez – « Equivalence of the Nash conjecture for primitive and sandwiched singularities », Proc. Amer. Math. Soc.133 (2005), p. 677–679. Zbl1056.14004MR2113914
  5. [5] H. Grauert – « Über Modifikationen und exzeptionnelle analytische Mengen », Math. Ann.146 (1962), p. 331–368. Zbl0173.33004MR137127
  6. [6] S. Ishii & J. Kollár – « The Nash problem on arc families of singularities », Duke Math. J.120 (2003), p. 601–620. Zbl1052.14011MR2030097
  7. [7] J. Kollár – « Toward moduli of singular varieties », Comp. Math.56 (1985), p. 369–398. Zbl0666.14003MR814554
  8. [8] H. Laufer – Normal two-dimensional Singularities, Princeton Univ. Press, 1971. Zbl0245.32005MR320365
  9. [9] —, « On rational singularities », Amer. J. Math.94 (1972), p. 597–608. Zbl0251.32002MR330500
  10. [10] —, « Weak simultaneous resolution for deformations of Gorenstein surface singularities, Part 2 », Proc. Symp. Pure Math.40 (1983), p. 1–29. Zbl0568.14008MR713236
  11. [11] D. T. Lê – « Geometry of complex surface singularities. Singularities, Sapporo 1998 », Advanced Studies in Pure Math., vol. 29, 2000, p. 163–180. Zbl1026.32056MR1819635
  12. [12] —, « Les singularités Sandwich », Resolution of Singularities. A research textbook in tribute to Oscar Zariski. Based on the courses given at the Working Week in Obergurgl, Austria, September 7–14, 1997, Progress in Math., vol. 181, 2000, p. 457–483. Zbl0974.14003MR1748614
  13. [13] M. Lejeune-Jalabert – « Arcs analytiques et résolution minimale des singularités des surfaces quasi-homogènes », Séminaire sur les singularités des surfaces, Palaiseau, 1976–1977 (M. Demazure, H. Pinkham & B. Teissier, éds.), Lecture Notes in Math., vol. 777, Springer, 1980. Zbl0432.14020
  14. [14] —, « Courbes tracées sur un germe d’hypersurface », Amer. J. Math.112 (1990), p. 525–568. Zbl0743.14002MR1064990
  15. [15] M. Lejeune-Jalabert & A. Reguera – « Arcs and wedges on sandwiched surface singularities », Amer. J. Math.121 (1999), p. 1191–1213. Zbl0960.14015MR1719822
  16. [16] J. Lipman – « Rational singularities with applications to algebraic surfaces and unique factorization », Publ. Math. Inst. Hautes Études Sci.36 (1969), p. 195–279. Zbl0181.48903MR276239
  17. [17] J. F. Nash – « Arc structure of singularities », Duke Math. J.81 (1995), p. 31–38. Zbl0880.14010MR1381967
  18. [18] C. Plénat – « A propos du problème des arcs de Nash », Ann. Inst. Fourier55 (2005), p. 805–823. Zbl1080.14021MR2149404
  19. [19] —, « Résolution du problème des arcs de Nash pour les points doubles rationnels D n , ( n 4 ) », Thèse, Univ. Paul Sabatier, Toulouse (Septembre 2004), available at http://fermat.ups-tlse.fr/~webthesards/theses.htm. 
  20. [20] C. P. Ramanujam – « Remarks on the Kodaira vanishing theorem », J. Indian Math. Soc.36 (1972), p. 41–51. Zbl0276.32018MR330164
  21. [21] A. J. Reguera – « Families of arcs on rational surface singularities », Manuscripta Math.88 (1995), p. 321–333. Zbl0867.14012MR1359701
  22. [22] —, « Image of the Nash map in terms of wedges », C. R. Acad. Sci. Paris, Sér.I 338 (2004), p. 385–390. Zbl1044.14032MR2057169
  23. [23] M. Reid – « Chapters on Algebraic Surfaces », Complex Algebraic Geometry. J. Kollár ed., Amer. Math. Soc., 1997, p. 3–159. Zbl0910.14016MR1442522
  24. [24] M. Spivakovsky – « Sandwiched singularities and desingularization of surfaces by normalized Nash transformations », Annals of Math.131 (1990), p. 411–491. Zbl0719.14005MR1053487

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.