A class of non-rational surface singularities with bijective Nash map
Camille Plénat; Patrick Popescu-Pampu
Bulletin de la Société Mathématique de France (2006)
- Volume: 134, Issue: 3, page 383-394
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topPlénat, Camille, and Popescu-Pampu, Patrick. "A class of non-rational surface singularities with bijective Nash map." Bulletin de la Société Mathématique de France 134.3 (2006): 383-394. <http://eudml.org/doc/272440>.
@article{Plénat2006,
abstract = {Let $(\mathcal \{S\},0)$ be a germ of complex analytic normal surface. On its minimal resolution, we consider the reduced exceptional divisor $E$ and its irreducible components $E_\{i\}$, $i \in I$. The Nash map associates to each irreducible component $C_k$ of the space of arcs through $0$ on $\mathcal \{S\}$ the unique component of $E$ cut by the strict transform of the generic arc in $C_k$. Nash proved its injectivity and asked if it was bijective. As a particular case of our main theorem, we prove that this is the case if $E\cdot E_\{i\} <0$ for any $\{i \in I\}$.},
author = {Plénat, Camille, Popescu-Pampu, Patrick},
journal = {Bulletin de la Société Mathématique de France},
keywords = {space of arcs; Nash map; Nash problem},
language = {eng},
number = {3},
pages = {383-394},
publisher = {Société mathématique de France},
title = {A class of non-rational surface singularities with bijective Nash map},
url = {http://eudml.org/doc/272440},
volume = {134},
year = {2006},
}
TY - JOUR
AU - Plénat, Camille
AU - Popescu-Pampu, Patrick
TI - A class of non-rational surface singularities with bijective Nash map
JO - Bulletin de la Société Mathématique de France
PY - 2006
PB - Société mathématique de France
VL - 134
IS - 3
SP - 383
EP - 394
AB - Let $(\mathcal {S},0)$ be a germ of complex analytic normal surface. On its minimal resolution, we consider the reduced exceptional divisor $E$ and its irreducible components $E_{i}$, $i \in I$. The Nash map associates to each irreducible component $C_k$ of the space of arcs through $0$ on $\mathcal {S}$ the unique component of $E$ cut by the strict transform of the generic arc in $C_k$. Nash proved its injectivity and asked if it was bijective. As a particular case of our main theorem, we prove that this is the case if $E\cdot E_{i} <0$ for any ${i \in I}$.
LA - eng
KW - space of arcs; Nash map; Nash problem
UR - http://eudml.org/doc/272440
ER -
References
top- [1] L. Bădescu – Algebraic Surfaces, Springer, 2001. Zbl0965.14001MR1805816
- [2] C. Caubel, A. Némethi & P. Popescu-Pampu – « Milnor open books and Milnor fillable contact 3-manifolds », Topology45 (2006), p. 673–689. Zbl1098.53064MR2218761
- [3] C. Caubel & P. Popescu-Pampu – « On the contact boundaries of normal surface singularities », C. R. Acad. Sci. Paris, Sér.I 339 (2004), p. 43–48. Zbl1080.32025MR2075231
- [4] J. Fernández-Sánchez – « Equivalence of the Nash conjecture for primitive and sandwiched singularities », Proc. Amer. Math. Soc.133 (2005), p. 677–679. Zbl1056.14004MR2113914
- [5] H. Grauert – « Über Modifikationen und exzeptionnelle analytische Mengen », Math. Ann.146 (1962), p. 331–368. Zbl0173.33004MR137127
- [6] S. Ishii & J. Kollár – « The Nash problem on arc families of singularities », Duke Math. J.120 (2003), p. 601–620. Zbl1052.14011MR2030097
- [7] J. Kollár – « Toward moduli of singular varieties », Comp. Math.56 (1985), p. 369–398. Zbl0666.14003MR814554
- [8] H. Laufer – Normal two-dimensional Singularities, Princeton Univ. Press, 1971. Zbl0245.32005MR320365
- [9] —, « On rational singularities », Amer. J. Math.94 (1972), p. 597–608. Zbl0251.32002MR330500
- [10] —, « Weak simultaneous resolution for deformations of Gorenstein surface singularities, Part 2 », Proc. Symp. Pure Math.40 (1983), p. 1–29. Zbl0568.14008MR713236
- [11] D. T. Lê – « Geometry of complex surface singularities. Singularities, Sapporo 1998 », Advanced Studies in Pure Math., vol. 29, 2000, p. 163–180. Zbl1026.32056MR1819635
- [12] —, « Les singularités Sandwich », Resolution of Singularities. A research textbook in tribute to Oscar Zariski. Based on the courses given at the Working Week in Obergurgl, Austria, September 7–14, 1997, Progress in Math., vol. 181, 2000, p. 457–483. Zbl0974.14003MR1748614
- [13] M. Lejeune-Jalabert – « Arcs analytiques et résolution minimale des singularités des surfaces quasi-homogènes », Séminaire sur les singularités des surfaces, Palaiseau, 1976–1977 (M. Demazure, H. Pinkham & B. Teissier, éds.), Lecture Notes in Math., vol. 777, Springer, 1980. Zbl0432.14020
- [14] —, « Courbes tracées sur un germe d’hypersurface », Amer. J. Math.112 (1990), p. 525–568. Zbl0743.14002MR1064990
- [15] M. Lejeune-Jalabert & A. Reguera – « Arcs and wedges on sandwiched surface singularities », Amer. J. Math.121 (1999), p. 1191–1213. Zbl0960.14015MR1719822
- [16] J. Lipman – « Rational singularities with applications to algebraic surfaces and unique factorization », Publ. Math. Inst. Hautes Études Sci.36 (1969), p. 195–279. Zbl0181.48903MR276239
- [17] J. F. Nash – « Arc structure of singularities », Duke Math. J.81 (1995), p. 31–38. Zbl0880.14010MR1381967
- [18] C. Plénat – « A propos du problème des arcs de Nash », Ann. Inst. Fourier55 (2005), p. 805–823. Zbl1080.14021MR2149404
- [19] —, « Résolution du problème des arcs de Nash pour les points doubles rationnels , », Thèse, Univ. Paul Sabatier, Toulouse (Septembre 2004), available at http://fermat.ups-tlse.fr/~webthesards/theses.htm.
- [20] C. P. Ramanujam – « Remarks on the Kodaira vanishing theorem », J. Indian Math. Soc.36 (1972), p. 41–51. Zbl0276.32018MR330164
- [21] A. J. Reguera – « Families of arcs on rational surface singularities », Manuscripta Math.88 (1995), p. 321–333. Zbl0867.14012MR1359701
- [22] —, « Image of the Nash map in terms of wedges », C. R. Acad. Sci. Paris, Sér.I 338 (2004), p. 385–390. Zbl1044.14032MR2057169
- [23] M. Reid – « Chapters on Algebraic Surfaces », Complex Algebraic Geometry. J. Kollár ed., Amer. Math. Soc., 1997, p. 3–159. Zbl0910.14016MR1442522
- [24] M. Spivakovsky – « Sandwiched singularities and desingularization of surfaces by normalized Nash transformations », Annals of Math.131 (1990), p. 411–491. Zbl0719.14005MR1053487
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.