On Nash problem of arc

Camille Plénat[1]

  • [1] Université du Maine, département de mathématiques, avenue Messiaen, 72085 Le Mans cedex 9 (France)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 3, page 805-823
  • ISSN: 0373-0956

Abstract

top
Let = N i the canonical decomposition of the space of arcs passing through a normal surface singularity. In this paper, we give two new conditions to ensure that N i is not included in N j . These conditions allow us to give two different direct demonstration of Nah problem for minimal sandwiched singularities.

How to cite

top

Plénat, Camille. "A propos du problème des arcs de Nash." Annales de l’institut Fourier 55.3 (2005): 805-823. <http://eudml.org/doc/116209>.

@article{Plénat2005,
abstract = {Soit $\{\mathcal \{H\}\}=\bigcup N_i$ la décomposition canonique de l’espace des arcs $\{\mathcal \{H\}\}$ passant par une singularité normale de surface. Dans cet article, on propose deux nouvelles conditions qui si elles sont vérifiées permettent de montrer que $N_i$ n’est pas inclus dans $N_j$. On applique ces conditions pour donner deux nouvelles preuves du problème de Nash pour les singularités sandwich minimales.},
affiliation = {Université du Maine, département de mathématiques, avenue Messiaen, 72085 Le Mans cedex 9 (France)},
author = {Plénat, Camille},
journal = {Annales de l’institut Fourier},
keywords = {geometry algebraic; space of arcs; minimal sandwiched singularities; problem of Nash},
language = {fre},
number = {3},
pages = {805-823},
publisher = {Association des Annales de l'Institut Fourier},
title = {A propos du problème des arcs de Nash},
url = {http://eudml.org/doc/116209},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Plénat, Camille
TI - A propos du problème des arcs de Nash
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 3
SP - 805
EP - 823
AB - Soit ${\mathcal {H}}=\bigcup N_i$ la décomposition canonique de l’espace des arcs ${\mathcal {H}}$ passant par une singularité normale de surface. Dans cet article, on propose deux nouvelles conditions qui si elles sont vérifiées permettent de montrer que $N_i$ n’est pas inclus dans $N_j$. On applique ces conditions pour donner deux nouvelles preuves du problème de Nash pour les singularités sandwich minimales.
LA - fre
KW - geometry algebraic; space of arcs; minimal sandwiched singularities; problem of Nash
UR - http://eudml.org/doc/116209
ER -

References

top
  1. M. Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129-136 Zbl0142.18602MR199191
  2. J. Fernandez-Sanchez, Equivalence of the Nash conjecture for primitive and sandwiched singularities, Proc. Amer. Math. Soc. 133 (2005), 677-679 Zbl1056.14004MR2113914
  3. S. Ishii, J. Kollár, The Nash problem on arc families of singularities, Duke Math. J. 120 (2003), 601-620 Zbl1052.14011MR2030097
  4. H.B. Laufer, Taut two-dimensional singularities, Math. Ann. 205 (1973), 131-164 Zbl0281.32010MR333238
  5. M. Lejeune-Jalabert, Courbes tracées sur un germe d'hypersurface, Amer. J. Math. 112 (1990), 525-568 Zbl0743.14002MR1064990
  6. J.F. Nash Jr., Arc structure of singularities, A celebration of John F. Nash, Jr., Duke Math. J. 81 (1995), 31-38 Zbl0880.14010MR1381967
  7. A. Reguera, Families of arcs on rational surface singularities, Manuscripta Math. 88 (1995), 321-333 Zbl0867.14012MR1359701
  8. Mark Spivakovsky, Sandwiched singularities and desingularization of surfaces by normalized Nash transformations, Annals of Math. 131 (1990), 411-491 Zbl0719.14005MR1053487
  9. Mark Spivakovsky, Valuation in function fields of surfaces, Amer. J. Math. 112 (1990), 107-156 Zbl0716.13003MR1037606

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.