-adic cycles
Publications Mathématiques de l'IHÉS (1969)
- Volume: 37, page 27-115
- ISSN: 0073-8301
Access Full Article
topHow to cite
topDwork, Bernard. "$p$-adic cycles." Publications Mathématiques de l'IHÉS 37 (1969): 27-115. <http://eudml.org/doc/103902>.
@article{Dwork1969,
author = {Dwork, Bernard},
journal = {Publications Mathématiques de l'IHÉS},
language = {eng},
pages = {27-115},
publisher = {Institut des Hautes Études Scientifiques},
title = {$p$-adic cycles},
url = {http://eudml.org/doc/103902},
volume = {37},
year = {1969},
}
TY - JOUR
AU - Dwork, Bernard
TI - $p$-adic cycles
JO - Publications Mathématiques de l'IHÉS
PY - 1969
PB - Institut des Hautes Études Scientifiques
VL - 37
SP - 27
EP - 115
LA - eng
UR - http://eudml.org/doc/103902
ER -
References
top- [1] B. DWORK, Norm residue symbol in local number fields, Abh. Math. Sem. Univ. Hamburg, 22 (1958), pp. 180-190. Zbl0083.26001MR20 #4541
- [2] B. DWORK, On the zeta function of a hypersurface, Publ. Math. I.H.E.S., 12 (1962), pp. 5-68. Zbl0173.48601MR28 #3039
- [3] B. DWORK, A deformation theory for the zeta function of a hypersurface, Proc. Int. Cong. Math., Stockholm, 1962. Zbl0196.53302
- [4] B. DWORK, On the zeta function of a hypersurface, II, Annals of Math., 80 (1964), pp. 227-299. Zbl0173.48601MR32 #5654
- [5] P. GRIFFITHS, Periods of integrals of an algebraic manifold, Notes, Univ. of Calif., Berkeley, 1966.
- [6] P. GRIFFITHS, On the period matrices and monodromy of homology in families of algebraic varieties, Publ. Math. I.H.E.S. (to appear).
- [7] W. HODGE, Theory and applications of harmonic integrals, Cambridge, 1952. Zbl0048.15702MR14,500b
- [8] N. KATZ, On the differential equations satisfied by period matrices, Publ. Math. I.H.E.S., 35 (1968), pp. 71-106. Zbl0159.22502MR39 #4168
- [9] M. KRASNER, Prolongement analytique uniforme et multiforme dans les corps valués complets, Colloque Int. C.N.R.S., n° 143, Paris, 1966. Zbl0139.26202MR34 #4246
- [10] S. LANG and A. WEIL, Number of points of varieties in finite fields, Amer. J. Math., 76 (1954), pp. 819-827. Zbl0058.27202MR16,398d
- [11] J. MANIN, The Hasse-Witt matrix of an algebraic curve, Amer. Math. Soc. Translations, ser. 2, 45 (1965). Zbl0148.28002
- [12] D. REICH, A p-adic fixed point formula, Amer. J. Math. (to appear). Zbl0213.47502
- [13] S. SHATZ, The cohomology of certain elliptic curves over local and quasi-local fields, Ill. J. Math., 11 (1967). Zbl0146.42301MR35 #6683
- [14] H. WEBER, Lehrbuch der algebra, vol. III, Chelsea Publ. Co., N. Y. Zbl29.0064.01
- [15] A. GROTHENDIECK, Theorèmes de dualité pour les faisceaux algébriques cohérents, Sem. Bourbaki, n° 149 (1957).
- [16] B. DWORK, On the rationality of the zeta function, Amer. J. Math., 82 (1960), pp. 631-648. Zbl0173.48501MR25 #3914
- [17] B. DWORK, A deformation theory for singular hypersurfaces, Proc. Int. Colloq. Alg. Geom., Tata Inst. Fund Res. Bombay, 1968. Zbl0218.14014
- [18] G. WASHNITZER, Some properties of formal schemes, Notes, Princeton Univ., 1963-1964.
- [19] J.-P. SERRE, Abelian l-adic representations and elliptic curves, W. A. Benjamin, Inc., New York, 1968. Zbl0186.25701MR41 #8422
- [20] D. N. CLARK, A note on the p-adic convergence of solutions of linear differential equations, Proc. Amer. Math. Soc., 17 (1966), pp. 262-269. Zbl0147.31101MR32 #4350
- [21] R. FRICKE, Die Elliptischen Funktionen und ihre Anwendungen, vol. II, Leipzig, 1922. JFM48.0432.01
Citations in EuDML Documents
top- Steven Sperber, Yasutaka Sibuya, On the -adic continuation of the logarithmic derivative of certain hypergeometric functions
- B. Dwork, On - adic differential equations IV generalized hypergeometric functions as - adic analytic functions in one variable
- B. M. Dwork, On -adic differential equations. The Frobenius structure of differential equations
- Bernard Dwork, Singular residue classes which are ordinary for
- Philippe Robba, Croissance des solutions d'une équation différentielle homogène
- Kaori Ota, On special values of generalized p-adic hypergeometric functions
- B. Dwork, On the Tate constant
- Bernard Dwork, On the Tate constant
- G. Gerotto, Congruenze per integrali ellittici
- S. Sperber, Congruence properties of the hyperkloosterman sum
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.