Congruences among modular forms on U(2,2) and the Bloch-Kato conjecture
- [1] Cornell University Department of Mathematics 310 Malott Hall Ithaca, NY 14853-4201 (USA)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 1, page 81-166
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKlosin, Krzysztof. "Congruences among modular forms on U(2,2) and the Bloch-Kato conjecture." Annales de l’institut Fourier 59.1 (2009): 81-166. <http://eudml.org/doc/10399>.
@article{Klosin2009,
abstract = {Let $k$ be a positive integer divisible by 4, $p>k$ a prime, $f$ an elliptic cuspidal eigenform (ordinary at $p$) of weight $k-1$, level 4 and non-trivial character. In this paper we provide evidence for the Bloch-Kato conjecture for the motives $\text\{ad\}^0 M(-1)$ and $\text\{ad\}^0 M(2)$, where $M$ is the motif attached to $f$. More precisely, we prove that under certain conditions the $p$-adic valuation of the algebraic part of the symmetric square $L$-function of $f$ evaluated at $k$ provides a lower bound for the $p$-adic valuation of the order of the Pontryagin dual of the Selmer group for the adjoint of the $p$-adic Galois representation attached to $f$ restricted to the Gaussian field and twisted by the inverse of the cyclotomic character. Our method uses an idea of Ribet, in that we introduce an intermediate step and produce congruences between CAP and non-CAP modular forms on the unitary group $\text\{U\}(2,2)$.},
affiliation = {Cornell University Department of Mathematics 310 Malott Hall Ithaca, NY 14853-4201 (USA)},
author = {Klosin, Krzysztof},
journal = {Annales de l’institut Fourier},
keywords = {Automorphic forms on unitary groups; congruences; Selmer groups; Bloch-Kato conjecture; automorphic forms on unitary groups},
language = {eng},
number = {1},
pages = {81-166},
publisher = {Association des Annales de l’institut Fourier},
title = {Congruences among modular forms on U(2,2) and the Bloch-Kato conjecture},
url = {http://eudml.org/doc/10399},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Klosin, Krzysztof
TI - Congruences among modular forms on U(2,2) and the Bloch-Kato conjecture
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 1
SP - 81
EP - 166
AB - Let $k$ be a positive integer divisible by 4, $p>k$ a prime, $f$ an elliptic cuspidal eigenform (ordinary at $p$) of weight $k-1$, level 4 and non-trivial character. In this paper we provide evidence for the Bloch-Kato conjecture for the motives $\text{ad}^0 M(-1)$ and $\text{ad}^0 M(2)$, where $M$ is the motif attached to $f$. More precisely, we prove that under certain conditions the $p$-adic valuation of the algebraic part of the symmetric square $L$-function of $f$ evaluated at $k$ provides a lower bound for the $p$-adic valuation of the order of the Pontryagin dual of the Selmer group for the adjoint of the $p$-adic Galois representation attached to $f$ restricted to the Gaussian field and twisted by the inverse of the cyclotomic character. Our method uses an idea of Ribet, in that we introduce an intermediate step and produce congruences between CAP and non-CAP modular forms on the unitary group $\text{U}(2,2)$.
LA - eng
KW - Automorphic forms on unitary groups; congruences; Selmer groups; Bloch-Kato conjecture; automorphic forms on unitary groups
UR - http://eudml.org/doc/10399
ER -
References
top- J. Bellaïche, G. Chenevier, -adic families of Galois representations and higher rank Selmer groups Zbl1192.11035
- J. Bellaïche, G. Chenevier, Formes non tempérées pour et conjectures de Bloch-Kato, Ann. Sci. École Norm. Sup. (4) 37 (2004), 611-662 Zbl1201.11051MR2097894
- T. Berger, An Eisenstein ideal for imaginary quadratic fields and the Bloch-Kato conjecture for Hecke characters, (2007)
- D. Blasius, J. D. Rogawski, Zeta functions of Shimura varieties, Motives (Seattle, WA, 1991) 55 (1994), 525-571, Amer. Math. Soc., Providence, RI Zbl0827.11033MR1265563
- S. Bloch, K. Kato, -functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I 86 (1990), 333-400, Birkhäuser Boston, Boston, MA Zbl0768.14001MR1086888
- H. Braun, Hermitian modular functions, Ann. of Math. (2) 50 (1949), 827-855 Zbl0038.23803MR32699
- H. Braun, Hermitian modular functions. II. Genus invariants of Hermitian forms, Ann. of Math. (2) 51 (1950), 92-104 Zbl0038.23901MR32700
- H. Braun, Hermitian modular functions. III, Ann. of Math. (2) 53 (1951), 143-160 Zbl0041.41603MR39005
- J. Brown, Saito-Kurokawa lifts and applications to the Bloch-Kato conjecture, Compos. Math. 143 (2007), 290-322 Zbl1172.11015MR2309988
- D. Bump, Automorphic forms and representations, 55 (1997), Cambridge University Press, Cambridge Zbl0868.11022MR1431508
- H. Darmon, F. Diamond, R. Taylor, Fermat’s last theorem, Elliptic curves, modular forms & Fermat’s last theorem (Hong Kong, 1993) (1997), 2-140, Internat. Press, Cambridge, MA Zbl0877.11035MR1605752
- P. Deligne, Valeurs de fonctions et périodes d’intégrales, Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (1979), 313-346, Amer. Math. Soc., Providence, R.I. Zbl0449.10022
- F. Diamond, J. Im, Modular forms and modular curves, Seminar on Fermat’s Last Theorem (Toronto, ON, 1993–1994) 17 (1995), 39-133, Amer. Math. Soc., Providence, RI Zbl0853.11032MR1357209
- Fred Diamond, Matthias Flach, Li Guo, The Tamagawa number conjecture of adjoint motives of modular forms, Ann. Sci. École Norm. Sup. (4) 37 (2004), 663-727 Zbl1121.11045MR2103471
- N. Dummigan, Period ratios of modular forms, Math. Ann. 318 (2000), 621-636 Zbl1041.11037MR1800772
- N. Dummigan, Symmetric square -functions and Shafarevich-Tate groups, Experiment. Math. 10 (2001), 383-400 Zbl1039.11029MR1917426
- N. Dummigan, Symmetric square L-functions and Shafarevich-Tate groups, II, (2008) Zbl1039.11029
- D. Eisenbud, Commutative algebra, 150 (1995), Springer-Verlag, New York Zbl0819.13001MR1322960
- J.-M. Fontaine, Sur certains types de représentations -adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate, Ann. of Math. (2) 115 (1982), 529-577 Zbl0544.14016MR657238
- J.-M. Fontaine, B. Perrin-Riou, Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions , Motives (Seattle, WA, 1991) 55 (1994), 599-706, Amer. Math. Soc., Providence, RI MR1265546
- E. Freitag, Siegelsche Modulfunktionen, 254 (1983), Springer-Verlag, Berlin Zbl0498.10016MR871067
- S. Gelbart, Automorphic forms on adèle groups, (1975), Princeton University Press, Princeton, N.J. Zbl0329.10018MR379375
- V. A. Gritsenko, The Maass space for . The Hecke ring, and zeta functions, Trudy Mat. Inst. Steklov. 183 (1990), 68-78, 223–225 Zbl0764.11026MR1092016
- V. A. Gritsenko, Parabolic extensions of the Hecke ring of the general linear group. II, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 183 (1990), 56-76, 165, 167 Zbl0748.11026MR1075006
- H. Hida, Galois representations and the theory of -adic Hecke algebras, Sūgaku 39 (1987), 124-139 Zbl0641.10025MR904860
- H. Hida, Elementary theory of -functions and Eisenstein series, 26 (1993), Cambridge University Press, Cambridge Zbl0942.11024MR1216135
- H. Hida, Modular forms and Galois cohomology, 69 (2000), Cambridge University Press, Cambridge Zbl0952.11014MR1779182
- H. Hida, -adic automorphic forms on Shimura varieties, (2004), Springer-Verlag, New York Zbl1055.11032MR2055355
- T. Hina, T. Sugano, On the local Hecke series of some classical groups over -adic fields, J. Math. Soc. Japan 35 (1983), 133-152 Zbl0496.14014MR679080
- T. Ikeda, On the lifting of hermitian modular forms, (2007) Zbl1155.11025MR2457521
- H. Iwaniec, Topics in classical automorphic forms, 17 (1997), American Mathematical Society, Providence, RI Zbl0905.11023MR1474964
- H. Kim, Automorphic -functions, Lectures on automorphic -functions 20 (2004), 97-201, Amer. Math. Soc., Providence, RI MR2071507
- G. Kings, The Bloch-Kato conjecture on special values of -functions. A survey of known results, J. Théor. Nombres Bordeaux 15 (2003), 179-198 Zbl1050.11063MR2019010
- K. Klosin, Congruences among automorphic forms on the unitary group , (2006), University of Michigan, Ann Arbor
- K. Klosin, Adelic Maass spaces on , (2007)
- H. Kojima, An arithmetic of Hermitian modular forms of degree two, Invent. Math. 69 (1982), 217-227 Zbl0502.10011MR674402
- A. Krieg, The Maaß spaces on the Hermitian half-space of degree , Math. Ann. 289 (1991), 663-681 Zbl0713.11033MR1103042
- R. P. Langlands, On the functional equations satisfied by Eisenstein series, (1976), Springer-Verlag, Berlin Zbl0332.10018MR579181
- B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. (1977), 33-186 (1978) Zbl0394.14008MR488287
- B. Mazur, An introduction to the deformation theory of Galois representations, Modular forms and Fermat’s last theorem (Boston, MA, 1995) (1997), 243-311, Springer, New York Zbl0901.11015MR1638481
- B. Mazur, A. Wiles, Class fields of abelian extensions of , Invent. Math. 76 (1984), 179-330 Zbl0545.12005MR742853
- T. Miyake, Modular forms, (1989), Springer-Verlag, Berlin Zbl0701.11014MR1021004
- C. Mœglin, J.-L. Waldspurger, Le spectre résiduel de , Ann. Sci. École Norm. Sup. (4) 22 (1989), 605-674 Zbl0696.10023MR1026752
- S. Raghavan, J. Sengupta, A Dirichlet series for Hermitian modular forms of degree , Acta Arith. 58 (1991), 181-201 Zbl0685.10022MR1121080
- K. A. Ribet, A modular construction of unramified -extensions of , Invent. Math. 34 (1976), 151-162 Zbl0338.12003MR419403
- K. Rubin, Euler systems, 147 (2000), Princeton University Press, Princeton, NJ Zbl0977.11001MR1749177
- C.-G. Schmidt, -adic measures attached to automorphic representations of , Invent. Math. 92 (1988), 597-631 Zbl0656.10023MR939477
- J.-P. Serre, Groupes de Lie -adiques attachés aux courbes elliptiques, Les Tendances Géom. en Algébre et Théorie des Nombres (1966), 239-256, Éditions du Centre National de la Recherche Scientifique, Paris Zbl0148.41502MR218366
- G. Shimura, Confluent hypergeometric functions on tube domains, Math. Ann. 260 (1982), 269-302 Zbl0502.10013MR669297
- G. Shimura, Euler products and Eisenstein series, 93 (1997), Published for the Conference Board of the Mathematical Sciences, Washington, DC Zbl0906.11020MR1450866
- G. Shimura, Arithmeticity in the theory of automorphic forms, 82 (2000), American Mathematical Society, Providence, RI Zbl0967.11001MR1780262
- C. M. Skinner, Selmer groups, (2004)
- J. Sturm, Special values of zeta functions, and Eisenstein series of half integral weight, Amer. J. Math. 102 (1980), 219-240 Zbl0433.10015MR564472
- R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), 553-572 Zbl0823.11030MR1333036
- E. Urban, Selmer groups and the Eisenstein-Klingen ideal, Duke Math. J. 106 (2001), 485-525 Zbl1061.11027MR1813234
- V. Vatsal, Canonical periods and congruence formulae, Duke Math. J. 98 (1999), 397-419 Zbl0979.11027MR1695203
- V. Vatsal, Special values of anticyclotomic -functions, Duke Math. J. 116 (2003), 219-261 Zbl1065.11048MR1953292
- L. C. Washington, Galois cohomology, Modular forms and Fermat’s last theorem (Boston, MA, 1995) (1997), 101-120, Springer, New York Zbl0928.12003MR1638477
- L. C. Washington, Introduction to cyclotomic fields, 83 (1997), Springer-Verlag, New York Zbl0966.11047MR1421575
- A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), 493-540 Zbl0719.11071MR1053488
- A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), 443-551 Zbl0823.11029MR1333035
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.