The Bloch-Kato conjecture on special values of -functions. A survey of known results
Journal de théorie des nombres de Bordeaux (2003)
- Volume: 15, Issue: 1, page 179-198
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topKings, Guido. "The Bloch-Kato conjecture on special values of $L$-functions. A survey of known results." Journal de théorie des nombres de Bordeaux 15.1 (2003): 179-198. <http://eudml.org/doc/249112>.
@article{Kings2003,
abstract = {This paper contains an overview of the known cases of the Bloch-Kato conjecture. It does not attempt to overview the known cases of the Beilinson conjecture and also excludes the Birch and Swinnerton-Dyer point. The paper starts with a brief review of the formulation of the general conjecture. The final part gives a brief sketch of the proofs in the known cases.},
author = {Kings, Guido},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Bloch-Kato conjecture; motives; -functions; survey},
language = {eng},
number = {1},
pages = {179-198},
publisher = {Université Bordeaux I},
title = {The Bloch-Kato conjecture on special values of $L$-functions. A survey of known results},
url = {http://eudml.org/doc/249112},
volume = {15},
year = {2003},
}
TY - JOUR
AU - Kings, Guido
TI - The Bloch-Kato conjecture on special values of $L$-functions. A survey of known results
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 1
SP - 179
EP - 198
AB - This paper contains an overview of the known cases of the Bloch-Kato conjecture. It does not attempt to overview the known cases of the Beilinson conjecture and also excludes the Birch and Swinnerton-Dyer point. The paper starts with a brief review of the formulation of the general conjecture. The final part gives a brief sketch of the proofs in the known cases.
LA - eng
KW - Bloch-Kato conjecture; motives; -functions; survey
UR - http://eudml.org/doc/249112
ER -
References
top- [1] F. Bars, On the Tamagawa number conjecture for CM elliptic curves defined over Q. J. Number Theory95 (2002), 190-208. Zbl1081.11045MR1924097
- [2] A. Beilinson, Higher regulators and values of L-functions. Jour. Soviet. Math.30 (1985), 2036-2070. Zbl0588.14013
- [3] J.-R. Belliard, T. Nguyen QuangDo, Formules de classes pour les corps abéliens réels. Ann. Inst. Fourier (Grenoble) 51 (2001), 907-937. Zbl1007.11063MR1849210
- [4] D. Benois, T. Nguyen Quang Do, La conjecture de Bloch et Kato pour les motifs Q(m) sur un corps abélien. Ann. Sci. Ecole Norm. Sup.35 (2002), 641-672. Zbl1125.11351MR1951439
- [5] S. Bloch, K. Kato, L-functions and Tamagawa numbers of motives. The Grothendieck Festschrift, Vol. I, 333-400, Progr. Math., 86, Birkhäuser Boston, Boston, MA, 1990. Zbl0768.14001MR1086888
- [6] D. Burns, C. Greither, On the equivariant Tamagawa number conjecture for Tate motives, preprint, 2000. Zbl1142.11076
- [7] D. Burns, M. Flach, Tamagawa numbers for motives with non-commutative coefficients. Doc. Math.6 (2001), 501-570. Zbl1052.11077MR1884523
- [8] P. Deligne, Valeurs de fonctions L et périodes d'intégrales. Proc. Sympos. Pure Math., XXXIII, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, pp. 313-346, Amer. Math. Soc., Providence, R.I., 1979. Zbl0449.10022MR546622
- [9] C. Deninger, Higher regulators and Hecke L-series of imaginary quadratic fields I. Invent. Math.96 (1989), 1-69. Zbl0721.14004MR981737
- [10] C. Deninger, Higher regulators and Hecke L-series of imaginary quadratic fields II. Ann. Math.132 (1990), 131-158. Zbl0721.14005MR1059937
- [11] F. Diamond, M. Flach, L. Guo, Adjoint motives of modular forms and the Tamagawa number conjecture, preprint, 2001. Zbl1121.11045
- [12] H. Esnault, On the Loday symbol in the Deligne-Beilinson cohomology. K-theory3 (1989), 1-28. Zbl0697.14006MR1014822
- [13] J.-M. Fontaine, Valeurs spéciales des fonctions L des motifs. Séminaire Bourbaki, Vol. 1991/92. Astérisque No. 206, (1992), Exp. No. 751, 4, 205-249. Zbl0799.14006MR1206069
- [14] J.-M. Fontaine, B. Perrin-Riou, Autour des conjectures de Bloch et Kato, cohomologie galoisienne et valeurs de fonctions L. Motives (Seattle, WA, 1991), 599-706, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994. Zbl0821.14013MR1265546
- [15] C. Goldstein, N. Schappacher, Conjecture de Deligne et Γ-hypothese de Lichtenbaum sur les corps quadratiques imaginaires. C. R. Acad. Sci. Paris Sér. I Math.296 (1983), 615-618. Zbl0553.12003
- [16] L. Guo, On the Bloch-Kato conjecture for Hecke L-functions. J. Number Theory57 (1996), 340-365. Zbl0869.11055MR1382756
- [17] M. Harrison, On the conjecture of Bloch-Kato for Grössencharacters over Q(i). Ph.D. Thesis, Cambridge University, 1993.
- [18] A. Huber, G. Kings, Degeneration of l-adic Eisenstein classes and of the elliptic poylog. Invent. Math.135 (1999), 545-594. Zbl0955.11027MR1669288
- [19] A. Huber, G. Kings, Bloch-Kato conjecture and main conjecture of Iwasawa theory for Dirichlet characters, to appear in Duke Math. J. Zbl1044.11095MR2002643
- [20] A. Huber, J. Wildeshaus, Classical motivic polylogarithm according to Beilinson and Deligne. Doc. Math. J. DMV3 (1998), 27-133. Zbl0906.19004MR1643974
- [21] U. Jannsen, Deligne homology, Hodge-D-conjecture, and motives. In: Rapoport et al (eds.): Beilinson's conjectures on special values of L-functions. Academic Press, 1988. Zbl0701.14019MR944998
- [22] U. Jannsen, On the l-adic cohomology of varieties over number fields and its Galois cohomology. In: Ihara et al. (eds.): Galois groups over Q, MSRI Publication, 1989. Zbl0703.14010MR1012170
- [23] K. Kato, Iwasawa theory and p-adic Hodge theory. Kodai Math. J.16 (1993), no. 1, 1-31. Zbl0798.11050MR1207986
- [24] K. Kato, Lectures on the approach to Iwasawa theory for Hasse- Weil L-functions via BdR I. Arithmetic algebraic geometry (Trento, 1991), 50-163, Lecture Notes in Math.1553, Springer, Berlin, 1993. Zbl0815.11051MR1338860
- [25] K. Kato, Lectures on the approach to Iwasawa theory of Hasse-Weil L-functions vis BdR, Part II, unpublished preprint, 1993. MR1338860
- [26] K. Kato, Euler systems, Iwasawa theory, and Selmer groups. Kodai Math. J.22 (1999), 313-372. Zbl0993.11033MR1727298
- [27] G. Kings, The Tamagawa number conjecture for CM elliptic curves. Invent. math.143 (2001), 571-627. Zbl1159.11311MR1817645
- [28] G. Kings, Higher regulators, Hilbert modular surfaces and special values of L-functions. Duke Math. J.92 (1998), 61-127. Zbl0962.11024MR1609325
- [29] M. Kolster, TH. Nguyen Quang Do, Universal distribution lattices for abelian number fields, preprint, 2000.
- [30] M. Kolster, TH. Nguyen Quang Do, V. Fleckinger, Twisted S-units, p-adic class number formulas, and the Lichtenbaum conjectures. Duke Math. J.84 (1996), no. 3, 679-717. Correction: Duke Math. J.90 (1997), no. 3, 641-643. Zbl0863.19003MR1408541
- [31] K. Kunnemann, On the Chow motive of an Abelian Scheme. Motives (Seattle, WA, 1991), 189-205, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994. Zbl0823.14032MR1265530
- [32] Y.I. Manin, Correspondences, motives and monoidal transformations. Mat. Sbor.77, AMS Transl. (1970), 475-507. Zbl0199.24803
- [33] B. Mazur, A. Wiles, Class fields of abelian extensions of Q. Invent. Math.76 (1984), 179-330. Zbl0545.12005MR742853
- [34] J. Nekovar, Beilinson's conjectures. Motives (Seattle, WA, 1991), 537-570, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994. Zbl0799.19003MR1265544
- [35] J. Neukirch, The Beilinson conjecture for algebraic number fields, in: M. Rapoport et al. (eds.): Beilinson's conjectures on Special Values of L-functions, Academic Press, 1988. Zbl0651.12009MR944995
- [36] K. Rubin, Euler systems. Annals of Mathematics Studies, 147, Princeton University Press, Princeton, NJ, 2000. Zbl0977.11001MR1749177
- [37] A.J. Scholl, Motives for modular forms. Invent. math.100 (1990), 419-430. Zbl0760.14002MR1047142
- [38] A. Wiles, The Iwasawa main conjecture for totally real fields. Ann. Math.131 (1990), 493-540. Zbl0719.11071MR1053488
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.