The Tamagawa number conjecture of adjoint motives of modular forms

Fred Diamond; Matthias Flach; Li Guo

Annales scientifiques de l'École Normale Supérieure (2004)

  • Volume: 37, Issue: 5, page 663-727
  • ISSN: 0012-9593

How to cite

top

Diamond, Fred, Flach, Matthias, and Guo, Li. "The Tamagawa number conjecture of adjoint motives of modular forms." Annales scientifiques de l'École Normale Supérieure 37.5 (2004): 663-727. <http://eudml.org/doc/82642>.

@article{Diamond2004,
author = {Diamond, Fred, Flach, Matthias, Guo, Li},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {5},
pages = {663-727},
publisher = {Elsevier},
title = {The Tamagawa number conjecture of adjoint motives of modular forms},
url = {http://eudml.org/doc/82642},
volume = {37},
year = {2004},
}

TY - JOUR
AU - Diamond, Fred
AU - Flach, Matthias
AU - Guo, Li
TI - The Tamagawa number conjecture of adjoint motives of modular forms
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 5
SP - 663
EP - 727
LA - eng
UR - http://eudml.org/doc/82642
ER -

References

top
  1. [1] Grothendieck A. et al. , Séminaire de Géométrie Algébrique 1, Lecture Notes in Math., vol. 224, Springer-Verlag, 1971. 
  2. [2] Artin M. et al. , Séminaire de Géométrie Algébrique 4, vol. 3, Lecture Notes in Math., vol. 305, Springer-Verlag, 1973. MR354654
  3. [3] Berger L., Représentations p-adiques et équations différentielles, Invent. Math.148 (2) (2002) 219-284. Zbl1113.14016MR1906150
  4. [4] Bloch S., Kato K., L-functions and Tamagawa numbers of motives, in: The Grothendieck Festschrift, vol. 1, Birkhäuser, 1990, pp. 333-400. Zbl0768.14001MR1086888
  5. [5] Breuil C., Conrad B., Diamond F., Taylor R., On the modularity of elliptic curves over Q : Wild 3-adic exercises, J. Amer. Math. Soc.14 (2001) 843-939. Zbl0982.11033MR1839918
  6. [6] Brown K., Cohomology of Groups, Springer-Verlag, 1982. Zbl0584.20036MR672956
  7. [7] Burns D., Flach M., Tamagawa numbers for motives with (noncommutative) coefficients, Documenta Mathematica6 (2001) 501-570. Zbl1052.11077MR1884523
  8. [8] Burns D., Greither C., On the equivariant Tamagawa number conjecture for Tate motives, Invent. Math.153 (2003) 303-359. Zbl1142.11076MR1992015
  9. [9] Carayol H., Sur les représentations ℓ-adiques attachées aux formes modulaires de Hilbert, C. R. Acad. Sci., Paris296 (1983) 629-632. Zbl0537.10018MR705677
  10. [10] Coates J., Schmidt C.-G., Iwasawa theory for the symmetric square of an elliptic curve, J. Reine Angew. Math.375/376 (1987) 104-156. Zbl0609.14013MR882294
  11. [11] Coates J., Wiles A., On the conjecture of Birch and Swinnerton–Dyer, Invent. Math.39 (1977) 223-251. Zbl0359.14009MR463176
  12. [12] Colmez P., Théorie d'Iwasawa des représentations de de Rham d'un corps local, Ann. of Math. (2)148 (2) (1998) 485-571. Zbl0928.11045MR1668555
  13. [13] Conrad B., Diamond F., Taylor R., Modularity of certain potentially Barsotti–Tate Galois representations, J. AMS12 (1999) 521-567. Zbl0923.11085MR1639612
  14. [14] Darmon H., Diamond F., Taylor R., Fermat's Last Theorem, in: Current Development in Mathematics, International Press, 1995, pp. 1-154. Zbl0877.11035MR1474977
  15. [15] Deligne P., Formes modulaires et représentations ℓ-adiques, in: Séminaire Bourbaki 1968/1969, exposé 255, Lecture Notes in Math., vol. 179, 1969, pp. 139-172. Zbl0206.49901
  16. [16] Deligne P., Les constantes de l'équation fonctionnelle des fonctions L, in: Modular Functions of One Variable. II, Lecture Notes in Math., vol. 349, Springer-Verlag, Berlin, 1997, pp. 501-595. Zbl0271.14011MR349635
  17. [17] Deligne P., Valeurs de fonctions L et périodes d'intégrales, in: Automorphic Forms, Representations and L-functions, Proc. Symp. Pure Math., American Math. Soc., vol. 33, 1979, pp. 313-346. Zbl0449.10022MR546622
  18. [18] Deligne P., Rapoport M., Les schémas de modules de courbes elliptiques, in: Lecture Notes in Math., vol. 349, 1973, pp. 143-316. Zbl0281.14010MR337993
  19. [19] de Smit B., Lenstra H., Explicit construction of universal deformation rings, in: Elliptic Curves, Modular Forms and Fermat's Last Theorem, International Press, Cambridge, 1995, pp. 313-326. Zbl0907.13010MR1638482
  20. [20] Diamond F., Congruence primes for cusp forms of weight k 2 , Astérisque196–197 (1991) 205-213. Zbl0783.11022MR1141459
  21. [21] Diamond F., The refined conjecture of Serre, in: Elliptic Curves, Modular Forms and Fermat's Last Theorem, International Press, Cambridge, 1995, pp. 22-37. Zbl0853.11031MR1363493
  22. [22] Diamond F., On deformation rings and Hecke rings, Annals of Math.144 (1996) 137-166. Zbl0867.11032MR1405946
  23. [23] Diamond F., An extension of Wiles' results, in: Modular Forms and Fermat's Last Theorem, Springer-Verlag, 1997, pp. 475-489. Zbl0917.11021MR1638490
  24. [24] Diamond F., The Taylor–Wiles construction and multiplicity one, Invent. Math.128 (1997) 379-391. Zbl0916.11037MR1440309
  25. [25] Diamond, F., Flach, M., Guo, L., Adjoint motives of modular forms and the Tamagawa number conjecture, preprint. Zbl1121.11045
  26. [26] Diamond F., Taylor R., Non-optimal levels of mod ℓ modular representations, Invent. Math.115 (1994) 435-462. Zbl0847.11025MR1262939
  27. [27] Diamond F., Taylor R., Lifting modular mod ℓ representations, Duke Math. J.74 (1994) 253-269. Zbl0809.11025MR1272977
  28. [28] Dickinson M., On the modularity of certain 2-adic Galois representations, Duke Math. J.109 (2001) 319-382. Zbl1015.11020MR1845182
  29. [29] Dimitrov, M., Galois representations modulo p and cohomology of Hilbert modular varieties, Prépub. Math. de l'Univ. Paris 13, 2004-02. MR2172950
  30. [30] Edixhoven B., Serre's conjecture, in: Modular Forms and Fermat's Last Theorem, Springer-Verlag, 1997, pp. 209-242. Zbl0918.11023MR1638480
  31. [31] Faltings G., Crystalline cohomology and p-adic étale cohomology, in: Algebraic Analysis, Geometry and Number Theory, The John Hopkins University Press, 1989, pp. 25-80. Zbl0805.14008MR1463696
  32. [32] Flach, M., Selmer groups for the symmetric square of an elliptic curve, thesis, Cambridge University, 1990. 
  33. [33] Flach M., A generalization of the Cassels–Tate pairing, J. Reine Angew. Math.412 (1990) 113-127. Zbl0711.14001MR1079004
  34. [34] Flach M., A finiteness theorem for the symmetric square of an elliptic curve, Invent. Math.109 (1992) 307-327. Zbl0781.14022MR1172693
  35. [35] Flach M., The equivariant Tamagawa number conjecture: a survey, in: Sands J., (Eds.), Proceedings of a Conference on Stark's Conjecture, Baltimore, 2002, Contemp. Math. Ser., AMS, 2004. Zbl1070.11025MR2088713
  36. [36] Fontaine J.-M., Modules galoisiens, modules filtrés et anneaux de Barsotti–Tate, in: Journées de Géométrie Algébrique de Rennes (III), Astérisque, vol. 65, Soc. Math. de France, 1979, pp. 3-80. Zbl0429.14016MR563472
  37. [37] Fontaine J.-M., Sur certains types de représentations p-adiques du groupe de Galois d'un corps local; Construction d'un anneau de Barsotti–Tate, Ann. Math.115 (1982) 529-577. Zbl0544.14016MR657238
  38. [38] Fontaine J.-M., Valeurs spéciales des fonctions L des motifs, in: Séminaire Bourbaki, exposé 751, février 1992, Astérisque, vol. 206, 1992, pp. 205-249. Zbl0799.14006MR1206069
  39. [39] Fontaine J.-M., Laffaille G., Construction de représentations p-adiques, Ann. Sci. Éc. Norm. Sup.15 (1982) 547-608. Zbl0579.14037MR707328
  40. [40] Fontaine J.-M., Mazur B., Geometric Galois representations, in: Elliptic Curves, Modular Forms and Fermat's Last Theorem, International Press, 1995, pp. 41-78. Zbl0839.14011MR1363495
  41. [41] Fontaine J.-M., Perrin-Riou B., Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonction L, in: Motives, Proc. Symp. in Pure Math., vol. 55, 1994, pp. 599-706, Part 1. Zbl0821.14013MR1265546
  42. [42] Fujiwara, K., Deformation rings and Hecke algebras in the totally real case, preprint. MR1041221
  43. [43] Gelbart S., Jacquet H., A relation between automorphic representations of G L 2 and G L 3 , Ann. Sci. Éc. Norm. Sup., IV. Ser.11 (1978) 471-542. Zbl0406.10022MR533066
  44. [44] Gérardin P., Facteurs locaux des algèbres simples de rang 4. I, in: Groupes Réductifs et Formes Automorphes, I (Paris, 1976–77), Univ. Paris VII, 1978, pp. 37-77. MR680785
  45. [45] Gross B., Zagier D., Heegner points and derivatives of L-series, Invent. Math.84 (1986) 225-320. Zbl0608.14019MR833192
  46. [46] Grothendieck A., Murre J.P., The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme, Springer-Verlag, 1971. Zbl0216.33001MR316453
  47. [47] Guo L., General Selmer groups and critical values of Hecke L-functions, Math. Ann.297 (1993) 221-233. Zbl0789.14018MR1241803
  48. [48] Guo L., On the Bloch–Kato conjecture for Hecke L-functions, J. Number Theory57 (1996) 340-365. Zbl0869.11055MR1382756
  49. [49] Harrison, M., On the conjecture of Bloch–Kato for Grössencharacters over Q i , Ph.D. thesis, Cambridge University, 1993. 
  50. [50] Hartshorne R., Algebraic Geometry, Springer-Verlag, Berlin, 1977. Zbl0367.14001MR463157
  51. [51] Hida H., Congruences of cusp forms and special values of their zeta functions, Invent. Math.63 (1981) 225-261. Zbl0459.10018MR610538
  52. [52] Huber A., Kings G., Bloch–Kato conjecture and main conjecture of Iwasawa theory for Dirichlet characters, Duke Math. J.119 (2003) 393-464. Zbl1044.11095MR2002643
  53. [53] Jannsen U., Mixed Motives and Algebraic K-theory, Lect. Notes in Math., vol. 1400, Springer, 1990. Zbl0691.14001MR1043451
  54. [54] Kato K., Logarithmic structures of Fontaine-Illusie, in: Algebraic Analysis, Geometry and Number Theory, The John Hopkins University Press, 1989, pp. 191-224. Zbl0776.14004MR1463703
  55. [55] Kato K., Iwasawa theory and p-adic Hodge theory, Kodai Math. J.16 (1993) 1-31. Zbl0798.11050MR1207986
  56. [56] Kato K., Euler systems, Iwasawa theory and Selmer groups, Kodai Math. J.22 (1999) 313-372. Zbl0993.11033MR1727298
  57. [57] Kings G., The Tamagawa number conjecture for CM elliptic curves, Invent. Math.143 (2001) 571-627. Zbl1159.11311MR1817645
  58. [58] Kolyvagin V.A., The Mordell–Weil and Shafarevich–Tate groups for Weil elliptic curves, Izv. Akad. Nauk SSSR Ser. Mat.52 (6) (1988) 1154-1180, 1327. Translation in, Math. USSR-Izv.33 (3) (1989) 473-499. Zbl0681.14016MR984214
  59. [59] Kolyvagin V.A., Logachev Yu.D., Finiteness of Ш over totally real fields, Izv. Akad. Nauk SSSR Ser. Mat.55 (4) (1991) 851-876, Translation in, Math. USSR-Izv.39 (1) (1992) 829-853. Zbl0791.14019
  60. [60] Lenstra H., Complete intersections and Gorenstein rings, in: Elliptic Curves, Modular Forms and Fermat's Last Theorem, International Press, Cambridge, 1995. Zbl0860.13012MR1363497
  61. [61] Mazur B., An introduction to the deformation theory of Galois representations, in: Modular Forms and Fermat's Last Theorem, Springer-Verlag, 1997, pp. 243-311. Zbl0901.11015MR1638481
  62. [62] Mazur B., Wiles A., Class fields of abelian extensions of Q , Invent. Math.76 (1984) 179-330. Zbl0545.12005MR742853
  63. [63] Miyake T., Modular Forms, Springer-Verlag, 1989. Zbl0701.11014MR1021004
  64. [64] Nekovar J., On the p-adic height of Heegner cycles, Math. Ann.302 (4) (1995) 609-686. Zbl0841.11025MR1343644
  65. [65] Ogg, On a convolution of L-series, Invent. Math.7 (1969) 297-312. Zbl0205.50902MR246819
  66. [66] Perrin-Riou B., Théorie d'Iwasawa des représentations p-adiques sur un corps local, Invent. Math115 (1994) 81-149. Zbl0838.11071MR1248080
  67. [67] Perrin-Riou B., Fonctions L p-adiques des représentations p-adiques, Astérisque229 (1995). Zbl0845.11040MR1327803
  68. [68] Ribet K., Congruence relations between modular forms, Proc. ICM17 (1983) 503-514. Zbl0575.10024MR804706
  69. [69] Rubin K., Tate–Shafarevich groups and L-functions of elliptic curves with complex multiplication, Invent. Math.89 (1987) 527-560. Zbl0628.14018MR903383
  70. [70] Rubin K., The “main conjecture” of Iwasawa theory for imaginary quadratic fields, Invent. Math.103 (1991) 25-68. Zbl0737.11030
  71. [71] Saito T., Modular forms and p-adic Hodge theory, Invent. Math.129 (1997) 607-620. Zbl0877.11034MR1465337
  72. [72] Savitt, D., Modularity of some potentially Barsotti–Tate Galois representations, Thesis, Harvard University, 2001. Zbl1053.11048
  73. [73] Schmidt C.-G., p-adic measures attached to automorphic representations of G L 3 , Invent. Math.92 (1988) 597-631. Zbl0656.10023MR939477
  74. [74] Scholl A.J., Modular forms and de Rham cohomology; Atkin–Swinnerton–Dyer congruences, Invent. Math.79 (1985) 49-77. Zbl0553.10023MR774529
  75. [75] Scholl A.J., Motives for modular forms, Invent. Math.100 (1990) 419-430. Zbl0760.14002MR1047142
  76. [76] Serre J.-P., Géométrie algébrigue et géométrie analytique, Ann. Inst. Fourier6 (1956) 1-42. Zbl0075.30401MR82175
  77. [77] Serre J.-P., Local Fields, Springer-Verlag, 1979. Zbl0423.12016MR554237
  78. [78] Serre J.-P., Sur les représentations modulaires de degré 2 de Gal ( Q ¯ / Q ) , Duke Math. J.54 (1987) 179-230. Zbl0641.10026MR885783
  79. [79] Shimura G., Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton University Press, 1971. Zbl0221.10029MR314766
  80. [80] Shimura G., On the holomorphy of certain Dirichlet series, Proc. London Math. Soc.31 (1975) 79-98. Zbl0311.10029MR382176
  81. [81] Shimura G., On the periods of modular forms, Math. Ann.229 (1977) 211-221. Zbl0363.10019MR463119
  82. [82] Skinner C.M., Wiles A., Ordinary representations and modular forms, Proc. Nat. Acad. Sci. USA94 (20) (1997) 10520-10527. Zbl0924.11044MR1471466
  83. [83] Skinner C.M., Wiles A., Residually reducible representations and modular forms, IHÉS Publ.89 (1999) 5-126, (2000). Zbl1005.11030MR1793414
  84. [84] Sturm J., Special values of zeta functions and Eisenstein series of half integral weight, Amer. J. Math.102 (1980) 219-240. Zbl0433.10015MR564472
  85. [85] Sturm J., Evaluation of the symmetric square at the near center point, Amer. J. Math.111 (1989) 585-598. Zbl0705.11027MR1011550
  86. [86] Taylor R., Wiles A., Ring theoretic properties of certain Hecke algebras, Annals of Math.141 (1995) 553-572. Zbl0823.11030MR1333036
  87. [87] Tsuji T., p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math.137 (2000) 233-411. Zbl0945.14008MR1705837
  88. [88] Wiles A., Modular elliptic curves and Fermat's Last Theorem, Annals of Math.141 (1995) 443-551. Zbl0823.11029MR1333035
  89. [89] Zhang S., Heights of Heegner cycles and derivatives of L-series, Invent. Math.130 (1997) 99-152. Zbl0882.11029MR1471887

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.