The Tamagawa number conjecture of adjoint motives of modular forms
Fred Diamond; Matthias Flach; Li Guo
Annales scientifiques de l'École Normale Supérieure (2004)
- Volume: 37, Issue: 5, page 663-727
- ISSN: 0012-9593
Access Full Article
topHow to cite
topDiamond, Fred, Flach, Matthias, and Guo, Li. "The Tamagawa number conjecture of adjoint motives of modular forms." Annales scientifiques de l'École Normale Supérieure 37.5 (2004): 663-727. <http://eudml.org/doc/82642>.
@article{Diamond2004,
author = {Diamond, Fred, Flach, Matthias, Guo, Li},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {5},
pages = {663-727},
publisher = {Elsevier},
title = {The Tamagawa number conjecture of adjoint motives of modular forms},
url = {http://eudml.org/doc/82642},
volume = {37},
year = {2004},
}
TY - JOUR
AU - Diamond, Fred
AU - Flach, Matthias
AU - Guo, Li
TI - The Tamagawa number conjecture of adjoint motives of modular forms
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 5
SP - 663
EP - 727
LA - eng
UR - http://eudml.org/doc/82642
ER -
References
top- [1] Grothendieck A. et al. , Séminaire de Géométrie Algébrique 1, Lecture Notes in Math., vol. 224, Springer-Verlag, 1971.
- [2] Artin M. et al. , Séminaire de Géométrie Algébrique 4, vol. 3, Lecture Notes in Math., vol. 305, Springer-Verlag, 1973. MR354654
- [3] Berger L., Représentations p-adiques et équations différentielles, Invent. Math.148 (2) (2002) 219-284. Zbl1113.14016MR1906150
- [4] Bloch S., Kato K., L-functions and Tamagawa numbers of motives, in: The Grothendieck Festschrift, vol. 1, Birkhäuser, 1990, pp. 333-400. Zbl0768.14001MR1086888
- [5] Breuil C., Conrad B., Diamond F., Taylor R., On the modularity of elliptic curves over : Wild 3-adic exercises, J. Amer. Math. Soc.14 (2001) 843-939. Zbl0982.11033MR1839918
- [6] Brown K., Cohomology of Groups, Springer-Verlag, 1982. Zbl0584.20036MR672956
- [7] Burns D., Flach M., Tamagawa numbers for motives with (noncommutative) coefficients, Documenta Mathematica6 (2001) 501-570. Zbl1052.11077MR1884523
- [8] Burns D., Greither C., On the equivariant Tamagawa number conjecture for Tate motives, Invent. Math.153 (2003) 303-359. Zbl1142.11076MR1992015
- [9] Carayol H., Sur les représentations ℓ-adiques attachées aux formes modulaires de Hilbert, C. R. Acad. Sci., Paris296 (1983) 629-632. Zbl0537.10018MR705677
- [10] Coates J., Schmidt C.-G., Iwasawa theory for the symmetric square of an elliptic curve, J. Reine Angew. Math.375/376 (1987) 104-156. Zbl0609.14013MR882294
- [11] Coates J., Wiles A., On the conjecture of Birch and Swinnerton–Dyer, Invent. Math.39 (1977) 223-251. Zbl0359.14009MR463176
- [12] Colmez P., Théorie d'Iwasawa des représentations de de Rham d'un corps local, Ann. of Math. (2)148 (2) (1998) 485-571. Zbl0928.11045MR1668555
- [13] Conrad B., Diamond F., Taylor R., Modularity of certain potentially Barsotti–Tate Galois representations, J. AMS12 (1999) 521-567. Zbl0923.11085MR1639612
- [14] Darmon H., Diamond F., Taylor R., Fermat's Last Theorem, in: Current Development in Mathematics, International Press, 1995, pp. 1-154. Zbl0877.11035MR1474977
- [15] Deligne P., Formes modulaires et représentations ℓ-adiques, in: Séminaire Bourbaki 1968/1969, exposé 255, Lecture Notes in Math., vol. 179, 1969, pp. 139-172. Zbl0206.49901
- [16] Deligne P., Les constantes de l'équation fonctionnelle des fonctions L, in: Modular Functions of One Variable. II, Lecture Notes in Math., vol. 349, Springer-Verlag, Berlin, 1997, pp. 501-595. Zbl0271.14011MR349635
- [17] Deligne P., Valeurs de fonctions L et périodes d'intégrales, in: Automorphic Forms, Representations and L-functions, Proc. Symp. Pure Math., American Math. Soc., vol. 33, 1979, pp. 313-346. Zbl0449.10022MR546622
- [18] Deligne P., Rapoport M., Les schémas de modules de courbes elliptiques, in: Lecture Notes in Math., vol. 349, 1973, pp. 143-316. Zbl0281.14010MR337993
- [19] de Smit B., Lenstra H., Explicit construction of universal deformation rings, in: Elliptic Curves, Modular Forms and Fermat's Last Theorem, International Press, Cambridge, 1995, pp. 313-326. Zbl0907.13010MR1638482
- [20] Diamond F., Congruence primes for cusp forms of weight , Astérisque196–197 (1991) 205-213. Zbl0783.11022MR1141459
- [21] Diamond F., The refined conjecture of Serre, in: Elliptic Curves, Modular Forms and Fermat's Last Theorem, International Press, Cambridge, 1995, pp. 22-37. Zbl0853.11031MR1363493
- [22] Diamond F., On deformation rings and Hecke rings, Annals of Math.144 (1996) 137-166. Zbl0867.11032MR1405946
- [23] Diamond F., An extension of Wiles' results, in: Modular Forms and Fermat's Last Theorem, Springer-Verlag, 1997, pp. 475-489. Zbl0917.11021MR1638490
- [24] Diamond F., The Taylor–Wiles construction and multiplicity one, Invent. Math.128 (1997) 379-391. Zbl0916.11037MR1440309
- [25] Diamond, F., Flach, M., Guo, L., Adjoint motives of modular forms and the Tamagawa number conjecture, preprint. Zbl1121.11045
- [26] Diamond F., Taylor R., Non-optimal levels of mod ℓ modular representations, Invent. Math.115 (1994) 435-462. Zbl0847.11025MR1262939
- [27] Diamond F., Taylor R., Lifting modular mod ℓ representations, Duke Math. J.74 (1994) 253-269. Zbl0809.11025MR1272977
- [28] Dickinson M., On the modularity of certain 2-adic Galois representations, Duke Math. J.109 (2001) 319-382. Zbl1015.11020MR1845182
- [29] Dimitrov, M., Galois representations modulo p and cohomology of Hilbert modular varieties, Prépub. Math. de l'Univ. Paris 13, 2004-02. MR2172950
- [30] Edixhoven B., Serre's conjecture, in: Modular Forms and Fermat's Last Theorem, Springer-Verlag, 1997, pp. 209-242. Zbl0918.11023MR1638480
- [31] Faltings G., Crystalline cohomology and p-adic étale cohomology, in: Algebraic Analysis, Geometry and Number Theory, The John Hopkins University Press, 1989, pp. 25-80. Zbl0805.14008MR1463696
- [32] Flach, M., Selmer groups for the symmetric square of an elliptic curve, thesis, Cambridge University, 1990.
- [33] Flach M., A generalization of the Cassels–Tate pairing, J. Reine Angew. Math.412 (1990) 113-127. Zbl0711.14001MR1079004
- [34] Flach M., A finiteness theorem for the symmetric square of an elliptic curve, Invent. Math.109 (1992) 307-327. Zbl0781.14022MR1172693
- [35] Flach M., The equivariant Tamagawa number conjecture: a survey, in: Sands J., (Eds.), Proceedings of a Conference on Stark's Conjecture, Baltimore, 2002, Contemp. Math. Ser., AMS, 2004. Zbl1070.11025MR2088713
- [36] Fontaine J.-M., Modules galoisiens, modules filtrés et anneaux de Barsotti–Tate, in: Journées de Géométrie Algébrique de Rennes (III), Astérisque, vol. 65, Soc. Math. de France, 1979, pp. 3-80. Zbl0429.14016MR563472
- [37] Fontaine J.-M., Sur certains types de représentations p-adiques du groupe de Galois d'un corps local; Construction d'un anneau de Barsotti–Tate, Ann. Math.115 (1982) 529-577. Zbl0544.14016MR657238
- [38] Fontaine J.-M., Valeurs spéciales des fonctions L des motifs, in: Séminaire Bourbaki, exposé 751, février 1992, Astérisque, vol. 206, 1992, pp. 205-249. Zbl0799.14006MR1206069
- [39] Fontaine J.-M., Laffaille G., Construction de représentations p-adiques, Ann. Sci. Éc. Norm. Sup.15 (1982) 547-608. Zbl0579.14037MR707328
- [40] Fontaine J.-M., Mazur B., Geometric Galois representations, in: Elliptic Curves, Modular Forms and Fermat's Last Theorem, International Press, 1995, pp. 41-78. Zbl0839.14011MR1363495
- [41] Fontaine J.-M., Perrin-Riou B., Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonction L, in: Motives, Proc. Symp. in Pure Math., vol. 55, 1994, pp. 599-706, Part 1. Zbl0821.14013MR1265546
- [42] Fujiwara, K., Deformation rings and Hecke algebras in the totally real case, preprint. MR1041221
- [43] Gelbart S., Jacquet H., A relation between automorphic representations of and , Ann. Sci. Éc. Norm. Sup., IV. Ser.11 (1978) 471-542. Zbl0406.10022MR533066
- [44] Gérardin P., Facteurs locaux des algèbres simples de rang 4. I, in: Groupes Réductifs et Formes Automorphes, I (Paris, 1976–77), Univ. Paris VII, 1978, pp. 37-77. MR680785
- [45] Gross B., Zagier D., Heegner points and derivatives of L-series, Invent. Math.84 (1986) 225-320. Zbl0608.14019MR833192
- [46] Grothendieck A., Murre J.P., The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme, Springer-Verlag, 1971. Zbl0216.33001MR316453
- [47] Guo L., General Selmer groups and critical values of Hecke L-functions, Math. Ann.297 (1993) 221-233. Zbl0789.14018MR1241803
- [48] Guo L., On the Bloch–Kato conjecture for Hecke L-functions, J. Number Theory57 (1996) 340-365. Zbl0869.11055MR1382756
- [49] Harrison, M., On the conjecture of Bloch–Kato for Grössencharacters over , Ph.D. thesis, Cambridge University, 1993.
- [50] Hartshorne R., Algebraic Geometry, Springer-Verlag, Berlin, 1977. Zbl0367.14001MR463157
- [51] Hida H., Congruences of cusp forms and special values of their zeta functions, Invent. Math.63 (1981) 225-261. Zbl0459.10018MR610538
- [52] Huber A., Kings G., Bloch–Kato conjecture and main conjecture of Iwasawa theory for Dirichlet characters, Duke Math. J.119 (2003) 393-464. Zbl1044.11095MR2002643
- [53] Jannsen U., Mixed Motives and Algebraic K-theory, Lect. Notes in Math., vol. 1400, Springer, 1990. Zbl0691.14001MR1043451
- [54] Kato K., Logarithmic structures of Fontaine-Illusie, in: Algebraic Analysis, Geometry and Number Theory, The John Hopkins University Press, 1989, pp. 191-224. Zbl0776.14004MR1463703
- [55] Kato K., Iwasawa theory and p-adic Hodge theory, Kodai Math. J.16 (1993) 1-31. Zbl0798.11050MR1207986
- [56] Kato K., Euler systems, Iwasawa theory and Selmer groups, Kodai Math. J.22 (1999) 313-372. Zbl0993.11033MR1727298
- [57] Kings G., The Tamagawa number conjecture for CM elliptic curves, Invent. Math.143 (2001) 571-627. Zbl1159.11311MR1817645
- [58] Kolyvagin V.A., The Mordell–Weil and Shafarevich–Tate groups for Weil elliptic curves, Izv. Akad. Nauk SSSR Ser. Mat.52 (6) (1988) 1154-1180, 1327. Translation in, Math. USSR-Izv.33 (3) (1989) 473-499. Zbl0681.14016MR984214
- [59] Kolyvagin V.A., Logachev Yu.D., Finiteness of Ш over totally real fields, Izv. Akad. Nauk SSSR Ser. Mat.55 (4) (1991) 851-876, Translation in, Math. USSR-Izv.39 (1) (1992) 829-853. Zbl0791.14019
- [60] Lenstra H., Complete intersections and Gorenstein rings, in: Elliptic Curves, Modular Forms and Fermat's Last Theorem, International Press, Cambridge, 1995. Zbl0860.13012MR1363497
- [61] Mazur B., An introduction to the deformation theory of Galois representations, in: Modular Forms and Fermat's Last Theorem, Springer-Verlag, 1997, pp. 243-311. Zbl0901.11015MR1638481
- [62] Mazur B., Wiles A., Class fields of abelian extensions of , Invent. Math.76 (1984) 179-330. Zbl0545.12005MR742853
- [63] Miyake T., Modular Forms, Springer-Verlag, 1989. Zbl0701.11014MR1021004
- [64] Nekovar J., On the p-adic height of Heegner cycles, Math. Ann.302 (4) (1995) 609-686. Zbl0841.11025MR1343644
- [65] Ogg, On a convolution of L-series, Invent. Math.7 (1969) 297-312. Zbl0205.50902MR246819
- [66] Perrin-Riou B., Théorie d'Iwasawa des représentations p-adiques sur un corps local, Invent. Math115 (1994) 81-149. Zbl0838.11071MR1248080
- [67] Perrin-Riou B., Fonctions L p-adiques des représentations p-adiques, Astérisque229 (1995). Zbl0845.11040MR1327803
- [68] Ribet K., Congruence relations between modular forms, Proc. ICM17 (1983) 503-514. Zbl0575.10024MR804706
- [69] Rubin K., Tate–Shafarevich groups and L-functions of elliptic curves with complex multiplication, Invent. Math.89 (1987) 527-560. Zbl0628.14018MR903383
- [70] Rubin K., The “main conjecture” of Iwasawa theory for imaginary quadratic fields, Invent. Math.103 (1991) 25-68. Zbl0737.11030
- [71] Saito T., Modular forms and p-adic Hodge theory, Invent. Math.129 (1997) 607-620. Zbl0877.11034MR1465337
- [72] Savitt, D., Modularity of some potentially Barsotti–Tate Galois representations, Thesis, Harvard University, 2001. Zbl1053.11048
- [73] Schmidt C.-G., p-adic measures attached to automorphic representations of , Invent. Math.92 (1988) 597-631. Zbl0656.10023MR939477
- [74] Scholl A.J., Modular forms and de Rham cohomology; Atkin–Swinnerton–Dyer congruences, Invent. Math.79 (1985) 49-77. Zbl0553.10023MR774529
- [75] Scholl A.J., Motives for modular forms, Invent. Math.100 (1990) 419-430. Zbl0760.14002MR1047142
- [76] Serre J.-P., Géométrie algébrigue et géométrie analytique, Ann. Inst. Fourier6 (1956) 1-42. Zbl0075.30401MR82175
- [77] Serre J.-P., Local Fields, Springer-Verlag, 1979. Zbl0423.12016MR554237
- [78] Serre J.-P., Sur les représentations modulaires de degré 2 de , Duke Math. J.54 (1987) 179-230. Zbl0641.10026MR885783
- [79] Shimura G., Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton University Press, 1971. Zbl0221.10029MR314766
- [80] Shimura G., On the holomorphy of certain Dirichlet series, Proc. London Math. Soc.31 (1975) 79-98. Zbl0311.10029MR382176
- [81] Shimura G., On the periods of modular forms, Math. Ann.229 (1977) 211-221. Zbl0363.10019MR463119
- [82] Skinner C.M., Wiles A., Ordinary representations and modular forms, Proc. Nat. Acad. Sci. USA94 (20) (1997) 10520-10527. Zbl0924.11044MR1471466
- [83] Skinner C.M., Wiles A., Residually reducible representations and modular forms, IHÉS Publ.89 (1999) 5-126, (2000). Zbl1005.11030MR1793414
- [84] Sturm J., Special values of zeta functions and Eisenstein series of half integral weight, Amer. J. Math.102 (1980) 219-240. Zbl0433.10015MR564472
- [85] Sturm J., Evaluation of the symmetric square at the near center point, Amer. J. Math.111 (1989) 585-598. Zbl0705.11027MR1011550
- [86] Taylor R., Wiles A., Ring theoretic properties of certain Hecke algebras, Annals of Math.141 (1995) 553-572. Zbl0823.11030MR1333036
- [87] Tsuji T., p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math.137 (2000) 233-411. Zbl0945.14008MR1705837
- [88] Wiles A., Modular elliptic curves and Fermat's Last Theorem, Annals of Math.141 (1995) 443-551. Zbl0823.11029MR1333035
- [89] Zhang S., Heights of Heegner cycles and derivatives of L-series, Invent. Math.130 (1997) 99-152. Zbl0882.11029MR1471887
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.