Hénon mappings in the complex domain I : the global topology of dynamical space

John H. Hubbard; Ralph W. Oberste-Vorth

Publications Mathématiques de l'IHÉS (1994)

  • Volume: 79, page 5-46
  • ISSN: 0073-8301

How to cite


Hubbard, John H., and Oberste-Vorth, Ralph W.. "Hénon mappings in the complex domain I : the global topology of dynamical space." Publications Mathématiques de l'IHÉS 79 (1994): 5-46. <http://eudml.org/doc/104097>.

author = {Hubbard, John H., Oberste-Vorth, Ralph W.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Hénon mapping; solenoidal mappings},
language = {eng},
pages = {5-46},
publisher = {Institut des Hautes Études Scientifiques},
title = {Hénon mappings in the complex domain I : the global topology of dynamical space},
url = {http://eudml.org/doc/104097},
volume = {79},
year = {1994},

AU - Hubbard, John H.
AU - Oberste-Vorth, Ralph W.
TI - Hénon mappings in the complex domain I : the global topology of dynamical space
JO - Publications Mathématiques de l'IHÉS
PY - 1994
PB - Institut des Hautes Études Scientifiques
VL - 79
SP - 5
EP - 46
LA - eng
KW - Hénon mapping; solenoidal mappings
UR - http://eudml.org/doc/104097
ER -


  1. [A] AHLFORS, L., Conformal Invariants, McGraw-Hill, New York, 1973. Zbl0272.30012
  2. [B] BEDFORD, E., Iteration of polynomial automorphisms of C2, Proceedings of the International Congress of Mathematicians, 1990, Kyoto, Japan, Springer-Verlag, Tokyo, Japan, 1991, 847-858. Zbl0746.58040MR93b:32039
  3. [BS1] BEDFORD, E. and SMILLIE, J., Polynomial diffeomorphisms of C2 : currents, equilibrium measure, and hyperbolicity, Invent. Math., 103 (1991), 69-99. Zbl0721.58037MR92a:32035
  4. [BS2] BEDFORD, E. and SMILLIE, J., Fatou-Bieberbach domains arising from polynomial automorphisms, Indiana U. Math. J., 40 (1991), 789-792. Zbl0739.32027MR92k:32044
  5. [BS3] BEDFORD, E. and SMILLIE, J., Polynomial diffeomorphisms of C2, II : Stable manifolds and recurrence, J. Amer. Math. Soc., 4 (1991), 657-679. Zbl0744.58068MR92m:32048
  6. [BS4] BEDFORD, E. and SMILLIE, J., Polynomial diffeomorphisms of C2, III : Ergodicity, exponents, and entropy of the equilibrium measure, Math. Ann. (to appear). Zbl0765.58013
  7. [BLS] BEDFORD, E., LYUBICH, M. and SMILLIE, J., Polynomial diffeomorphisms of C2, IV : The measure of maximal entropy and laminar currents, (to appear). Zbl0792.58034
  8. [BC] BENEDICKS, M. and CARLESON, L., The dynamics of the Hénon map, Ann. Math., 133 (1991), 73-169. Zbl0724.58042MR92d:58116
  9. [Bi] BIEBERBACH, L., Beispiel zweier ganzer Funktionen zweier komplexer Variabeln, welche eine schlicht volumetreue Abbildung des R4 auf einen Teil seiner selbst vermitteln, Sitzungsber. Preuss. Akad. Wiss. Berlin, Phys-math. Kl. (1933), 476-479. Zbl0007.21502JFM59.0344.02
  10. [BH] BRANNER, B., HUBBARD, J., The dynamics of cubic polynomials, II : Patterns and parapatterns, Acta Math., 169 (1992), 229-325. Zbl0812.30008MR94d:30044
  11. [Br] BROLIN, H., Invariant sets under iteration of rational functions, Ark. Math., 6 (1965), 103-144. Zbl0127.03401MR33 #2805
  12. [D] DOLD, A., Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology, 4 (1965), 1-8. Zbl0135.23101MR33 #1850
  13. [DH] DOUADY, A. et HUBBARD, J., Etude dynamique des polynômes complexes, Publications mathématiques d'Orsay, Université de Paris-Sud (1984-1985). Zbl0552.30018
  14. [EE] EARLE, C. and EELLS, J., A fibre bundle description of Teichmüller theory, J. Diff. Geom., 3 (1969), 33-41. Zbl0185.32901MR43 #2737a
  15. [F] FATOU, P., Sur les fonctions méromorphes de deux variables, C. R. Acad. Sc. Paris, 175 (1922), 862-865 ; Sur certaines fonctions uniformes de deux variables, ibid., 175 (1922), 1030-1033. Zbl48.0391.02JFM48.0391.02
  16. [FS] FORNÆSS, J. and SIBONY, N., Complex Hénon mappings in C2 and Fatou-Bieberbach domains, Duke Math. J., 65 (1992), 345-380. Zbl0761.32015
  17. [FM] FRIEDLAND, S. and MILNOR, J., Dynamical properties of plane polynomial automorphisms, Ergod Th. & Dynam. Syst., 9 (1989), 67-99. Zbl0651.58027MR90f:58163
  18. [G] GUNNING, R., Introduction to Holomorphic Functions of Several Variables, Vol. III : Homological Theory, Wadsworth & Brooks/Cole, Belmont, CA, 1990. Zbl0699.32001
  19. [Ha] HAMSTROM, M., Homotopy groups of the space of homeomorphisms, Ill. J. Math., 10 (1966), 563-573. Zbl0151.33002MR34 #2014
  20. [Hé1] HÉNON, M., Numerical study of quadratic area preserving mappings, Q. Appl. Math., 27 (1969), 291-312. Zbl0191.45403MR40 #6727
  21. [Hé2] HÉNON, M., A two-dimensional mapping with a strange attractor, Commun. Math. Phys., 50 (1976), 69-77. Zbl0576.58018MR54 #10917
  22. [Ho] HOLMES, P., Bifurcation sequences in horseshoe maps : infinitely many routes to chaos, Phys. Lett. A, 104 (1984), 299-302. MR85j:58115
  23. [HWh] HOLMES, P. and WHITLEY, R., Bifurcations of one- and two-dimensional maps, Philos. Trans. Roy. Soc. London, Ser. A, 311 (1984), 43-102. Zbl0556.58023MR87h:58143a
  24. [HWi] HOLMES, P. and WILLIAMS, R., Knotted periodic orbits in suspensions of Smale's horseshoe : torus knots and bifurcation sequences, Arch. Rational Mech. Anal., 90 (1985), 115-194. Zbl0593.58027MR87h:58142
  25. [H] HUBBARD, J., The Hénon mappings in the complex domain, in Chaotic Dynamics and Fractals (M. Barnsley and S. Demko, ed.), Academic Press, New York, 1986, pp. 101-111. Zbl0601.32029MR858009
  26. [HY] HUBBARD, J., Local connectivity of Julia sets and bifurcation loci : three theorems of J.-C. Yoccoz, in Topological Methods in Modern Mathematics : A Symposium in Honor of John Milnor's Sixtieth Birthday, Publish or Perish, Houston, Texas, 1993, pp. 467-511. Zbl0797.58049MR94c:58172
  27. [HO] HUBBARD, J. and OBERSTE-VORTH, R., Hénon mappings in the complex domain, II : projective and inductive limits of polynomials, in Real and Complex Dynamics, Kluwer, Amsterdam, 1994. 
  28. [M1] MILNOR, J., Non-expansive Hénon maps, Adv. in Math., 69 (1988), 109-114. Zbl0647.58043MR89g:58174
  29. [M2] MILNOR, J., Dynamics in one complex variable : introductory lectures, preprint, Institute for Mathematical Sciences, SUNY, Stony Brook (1990). 
  30. [MV] MORA, L. and VIANA, M., Abundance of strange attractors, Acta Math. (to appear). Zbl0815.58016
  31. [O] OBERSTE-VORTH, R., Complex horseshoes (to appear). Zbl1183.37065
  32. [Sm] SMALE, S., Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817 ; reprinted in The Mathematics of Time, Springer-Verlag, New York, 1980. Zbl0202.55202MR37 #3598
  33. [S] SMILLIE, J., The entropy of polynomial diffeomorphisms of C2, Ergod. Th. and Dynam. Syst., 10 (1990), 823-827. Zbl0695.58023MR92b:58131
  34. [T] THURSTON, W., The combinatorics of rational maps (to appear). 
  35. [vD] VAN DANTZIG, D., Über topologisch homogene Kontinua, Fund. Math., 14 (1930), 102-105. Zbl56.1130.01JFM56.1130.01
  36. [V] VIETORIS, L., Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen, Math. Ann., 97 (1927), 454-472. Zbl53.0552.01JFM53.0552.01
  37. [W] WILLIAMS, R., One-dimensional nonwandering sets, Topology, 6 (1967), 473-487. Zbl0159.53702MR36 #897
  38. [Y] YOCCOZ, J., Sur la connectivité locale de M, unpublished (1989). 

Citations in EuDML Documents

  1. Eric Bedford, John Smillie, Polynomial diffeomorphisms of C 2 : VII. Hyperbolicity and external rays
  2. Georges Dloussky, Franz Kohler, Classification of singular germs of mappings and deformations of compact surfaces of class VII₀
  3. Georges Dloussky, From non-Kählerian surfaces to Cremona group of P 2 (C)
  4. Georges Dloussky, Karl Oeljeklaus, Vector fields and foliations on compact surfaces of class VII 0
  5. Daniel Greb, Christian Miebach, Invariant meromorphic functions on Stein spaces

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.