Invariant meromorphic functions on Stein spaces
Daniel Greb[1]; Christian Miebach[2]
- [1] Albert-Ludwigs-Universität Freiburg Mathematisches Institut Abteilung für Reine Mathematik Eckerstr. 1 79104 Freiburg im Breisgau Germany
- [2] Laboratoire de Mathématiques Pures et Appliquées Université du Littoral 50, rue F. Buisson 62228 Calais Cedex France
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 5, page 1983-2011
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGreb, Daniel, and Miebach, Christian. "Invariant meromorphic functions on Stein spaces." Annales de l’institut Fourier 62.5 (2012): 1983-2011. <http://eudml.org/doc/251086>.
@article{Greb2012,
abstract = {In this paper we develop fundamental tools and methods to study meromorphic functions in an equivariant setup. As our main result we construct quotients of Rosenlicht-type for Stein spaces acted upon holomorphically by complex-reductive Lie groups and their algebraic subgroups. In particular, we show that in this setup invariant meromorphic functions separate orbits in general position. Applications to almost homogeneous spaces and principal orbit types are given. Furthermore, we use the main result to investigate the relation between holomorphic and meromorphic invariants for reductive group actions. As one important step in our proof we obtain a weak equivariant analogue of Narasimhan’s embedding theorem for Stein spaces.},
affiliation = {Albert-Ludwigs-Universität Freiburg Mathematisches Institut Abteilung für Reine Mathematik Eckerstr. 1 79104 Freiburg im Breisgau Germany; Laboratoire de Mathématiques Pures et Appliquées Université du Littoral 50, rue F. Buisson 62228 Calais Cedex France},
author = {Greb, Daniel, Miebach, Christian},
journal = {Annales de l’institut Fourier},
keywords = {Lie group action; Stein space; invariant meromorphic function; Rosenlicht quotient},
language = {eng},
number = {5},
pages = {1983-2011},
publisher = {Association des Annales de l’institut Fourier},
title = {Invariant meromorphic functions on Stein spaces},
url = {http://eudml.org/doc/251086},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Greb, Daniel
AU - Miebach, Christian
TI - Invariant meromorphic functions on Stein spaces
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 5
SP - 1983
EP - 2011
AB - In this paper we develop fundamental tools and methods to study meromorphic functions in an equivariant setup. As our main result we construct quotients of Rosenlicht-type for Stein spaces acted upon holomorphically by complex-reductive Lie groups and their algebraic subgroups. In particular, we show that in this setup invariant meromorphic functions separate orbits in general position. Applications to almost homogeneous spaces and principal orbit types are given. Furthermore, we use the main result to investigate the relation between holomorphic and meromorphic invariants for reductive group actions. As one important step in our proof we obtain a weak equivariant analogue of Narasimhan’s embedding theorem for Stein spaces.
LA - eng
KW - Lie group action; Stein space; invariant meromorphic function; Rosenlicht quotient
UR - http://eudml.org/doc/251086
ER -
References
top- D. N. Akhiezer, Invariant meromorphic functions on complex semisimple Lie groups, Invent. Math. 65 (1981/82), 325-329 Zbl0479.32010MR643557
- Andrzej Białynicki-Birula, Quotients by actions of groups, Algebraic quotients. Torus actions and cohomology. The adjoint representation and the adjoint action 131 (2002), 1-82, Springer, Berlin Zbl1061.14046MR1925828
- David Birkes, Orbits of linear algebraic groups, Ann. of Math. (2) 93 (1971), 459-475 Zbl0198.35001MR296077
- Gerd Fischer, Complex analytic geometry, (1976), Springer-Verlag, Berlin Zbl0343.32002MR430286
- Akira Fujiki, On automorphism groups of compact Kähler manifolds, Invent. Math. 44 (1978), 225-258 Zbl0367.32004MR481142
- Hans Grauert, Reinhold Remmert, Theory of Stein spaces, 236 (1979), Springer-Verlag, Berlin Zbl0433.32007MR580152
- Hans Grauert, Reinhold Remmert, Coherent analytic sheaves, 265 (1984), Springer-Verlag, Berlin Zbl0537.32001MR755331
- Daniel Greb, Compact Kähler quotients of algebraic varieties and Geometric Invariant Theory, Adv. Math. 224 (2010), 401-431 Zbl1216.14044MR2609010
- Daniel Greb, Projectivity of analytic Hilbert and Kähler quotients, Trans. Amer. Math. Soc. 362 (2010), 3243-3271 Zbl1216.14045MR2592955
- Peter Heinzner, Linear äquivariante Einbettungen Steinscher Räume, Math. Ann. 280 (1988), 147-160 Zbl0617.32022MR928302
- Peter Heinzner, Geometric invariant theory on Stein spaces, Math. Ann. 289 (1991), 631-662 Zbl0728.32010MR1103041
- Peter Heinzner, Luca Migliorini, Marzia Polito, Semistable quotients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), 233-248 Zbl0922.32017MR1631577
- Harald Holmann, Komplexe Räume mit komplexen Transformations-gruppen, Math. Ann. 150 (1963), 327-360 Zbl0156.30603MR150789
- John H. Hubbard, Ralph W. Oberste-Vorth, Hénon mappings in the complex domain. I. The global topology of dynamical space, Inst. Hautes Études Sci. Publ. Math. (1994), 5-46 Zbl0839.54029MR1307296
- A. Huckleberry, E. Oeljeklaus, Classification theorems for almost homogeneous spaces, 9 (1984), Université de Nancy Institut Élie Cartan, Nancy Zbl0549.32024MR782881
- David I. Lieberman, Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds, Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975–1977) 670 (1978), 140-186, Springer, Berlin Zbl0391.32018MR521918
- Domingo Luna, Slices étales, Sur les groupes algébriques (1973), 81-105. Bull. Soc. Math. France, Paris, Mémoire 33, Soc. Math. France, Paris Zbl0286.14014MR318167
- Domingo Luna, Fonctions différentiables invariantes sous l’opération d’un groupe réductif, Ann. Inst. Fourier (Grenoble) 26 (1976), ix, 33-49 Zbl0315.20039MR423398
- Raghavan Narasimhan, Imbedding of holomorphically complete complex spaces, Amer. J. Math. 82 (1960), 917-934 Zbl0104.05402MR148942
- V. L. Popov, È. B. Vinberg, Invariant theory, Algebraic geometry IV 55 (1994), 123-284, Springer-Verlag, Berlin Zbl0789.14008
- Zinovy Reichstein, Nikolaus Vonessen, Stable affine models for algebraic group actions, J. Lie Theory 14 (2004), 563-568 Zbl1060.14067MR2066872
- Reinhold Remmert, Holomorphe und meromorphe Abbildungen komplexer Räume, Math. Ann. 133 (1957), 328-370 Zbl0079.10201MR92996
- R. W. Richardson, Deformations of Lie subgroups and the variation of isotropy subgroups, Acta Math. 129 (1972), 35-73 Zbl0242.22020MR299723
- R. W. Richardson, Principle orbit types for reductive groups acting on Stein manifolds, Math. Ann. 208 (1974), 323-331 Zbl0267.32015MR355123
- Maxwell Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401-443 Zbl0073.37601MR82183
- Dennis M. Snow, Reductive group actions on Stein spaces, Math. Ann. 259 (1982), 79-97 Zbl0509.32021MR656653
- Wilhelm Stoll, Über meromorphe Abbildungen komplexer Räume. I, Math. Ann. 136 (1958), 201-239 Zbl0096.06202MR103283
- Wilhelm Stoll, Über meromorphe Abbildungen komplexer Räume. II, Math. Ann. 136 (1958), 393-429 Zbl0096.06202MR103284
- Jean-Louis Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math. 36 (1976), 295-312 Zbl0333.32010MR481096
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.