On lifting from classical groups to G L N

J. W. Cogdell; H. H. Kim; I. I. Piatetski-Shapiro; F. Shahidi

Publications Mathématiques de l'IHÉS (2001)

  • Volume: 93, page 5-30
  • ISSN: 0073-8301

How to cite

top

Cogdell, J. W., et al. "On lifting from classical groups to $GL_N$." Publications Mathématiques de l'IHÉS 93 (2001): 5-30. <http://eudml.org/doc/104177>.

@article{Cogdell2001,
author = {Cogdell, J. W., Kim, H. H., Piatetski-Shapiro, I. I., Shahidi, F.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Langlands functorial lift; ; ; generic cuspidal automorphic representations; weak functorial lift},
language = {eng},
pages = {5-30},
publisher = {Institut des Hautes Etudes Scientifiques},
title = {On lifting from classical groups to $GL_N$},
url = {http://eudml.org/doc/104177},
volume = {93},
year = {2001},
}

TY - JOUR
AU - Cogdell, J. W.
AU - Kim, H. H.
AU - Piatetski-Shapiro, I. I.
AU - Shahidi, F.
TI - On lifting from classical groups to $GL_N$
JO - Publications Mathématiques de l'IHÉS
PY - 2001
PB - Institut des Hautes Etudes Scientifiques
VL - 93
SP - 5
EP - 30
LA - eng
KW - Langlands functorial lift; ; ; generic cuspidal automorphic representations; weak functorial lift
UR - http://eudml.org/doc/104177
ER -

References

top
  1. [1] D. BARBASCH and A. MOY, Whittaker models with an Iwahori fixed vector, Contemporary Mathematics 177 (1994), 101-105. Zbl0854.22019MR1303602
  2. [2] A. BOREL, Automorphic L-functions, Proc. Symp. Pure Math. 33, part 2 (1979), 27-61. Zbl0412.10017MR546608
  3. [3] W. CASSELMAN and F. SHAHIDI, On reducibility of standard modules for generic representations, Ann. Sci. École Norm. Sup. 31 (1998), 561-589. Zbl0947.11022MR1634020
  4. [4] J. W. COGDELL and I. I. PIATETSKI-SHAPIRO, Converse theorems for GLn, Publ. Math. IHES 79 (1994), 157-214. Zbl0814.11033MR1307299
  5. [5] J. W. COGDELL and I. I. PIATETSKI-SHAPIRO, Unitarity and functoriality, Geom. Funct. Anal. 5 (1995), 164-173. Zbl0842.11021MR1334866
  6. [6] J. W. COGDELL and I. I. PIATETSKI-SHAPIRO, Stability of gamma factors for SO(2n + 1), Manuscripta math. 95 (1998), 437-461. Zbl0959.22011MR1618194
  7. [7] J. W. COGDELL and I. I. PIATETSKI-SHAPIRO, Converse theorems for GLn, II, J. reine angew. Math. 507 (1999), 165-188. Zbl0912.11022MR1670207
  8. [8] J. W. COGDELL and I. I. PIATETSKI-SHAPIRO, Converse theorems for GLn and their application to liftings, to appear in the proceedings of the International Conference on Cohomology of Arithmetic Groups, Automorphic Forms, and L-functions, Tata Institute of Fundamental Research. Zbl1039.11030MR1986092
  9. [9] S. GELBART and I. I. PIATETSKI-SHAPIRO, L-functions for G × GLn, Springer Lecture Notes in Math. 1254, 52-146. 
  10. [10] S. GELBART and F. SHAHIDI, Boundedness of automorphic L-functions in finite vertical strips, to appear, Journal of the AMS. Zbl1050.11053
  11. [11] D. GINZBURG, L-functions for SOn × GLk, J. reine angew. Math. 405 (1990), 156-280. Zbl0684.22009MR1041001
  12. [12] G. HENNIART, Caractérisation de la correspondance de Langlands locale par les facteurs de paires, Invent. Math. 113 (1993), 339-350. Zbl0810.11069MR1228128
  13. [13] H. JACQUET, I. I. PIATETSKI-SHAPIRO and J. SHALIKA, Rankin-Selberg convolutions, Am. J. Math. 105 (1983), 367-464. Zbl0525.22018MR701565
  14. [14] H. JACQUET and J. SHALIKA, On Euler products and the classification of automorphic representations, I, Am. J. Math. 103 (1981), 499-558; II, 103 (1981), 777-815. Zbl0473.12008MR618323
  15. [15] H. JACQUET and J. SHALIKA, The Whittaker models for induced representations, Pacific J. Math. 109 (1983), 107-120. Zbl0535.22017MR716292
  16. [16] H. JACQUET and J. SHALIKA, A lemma on highly ramified -factors, Math. Ann. 271 (1985), 319-332. Zbl0541.12010MR787183
  17. [17] H. JACQUET and J. SHALIKA, Rankin-Selberg Convolutions: Archimedean Theory, Festschrift in Honor of I. I. Piatetski-Shapiro, Part I, Jerusalem, Weizmann Science Press (1990), 125-207. Zbl0712.22011MR1159102
  18. [18] H. KIM, Langlands-Shahidi method and poles of automorphic L-functions: Applications to exterior square L-functions, Canad. J. Math. 51 (1999), 835-849. Zbl0934.11024MR1701344
  19. [19] H. KIM, Langlands-Shahidi method and poles of automorphic L-functions, II, Israel J. Math. 117 (2000), 261-284; Correction, Israel J. Math. 118 (2000), 379. Zbl1041.11035MR1760595
  20. [20] R. P. LANGLANDS, Problems in the theory of automorphic forms, Lectures in Modern Analysis and Applications, III, Lecture Notes in Math. 170, Springer Verlag, Berlin (1970), 18-61. Zbl0225.14022MR302614
  21. [21] R. P. LANGLANDS, On the Functional Equations Satisfied by Eisenstein Series, Lecture Notes in Mathematics 544, Springer Verlag, Berlin (1976). Zbl0332.10018MR579181
  22. [22] R. P. LANGLANDS, On the notion of an automorphic representation, Proc. Sympos. Pure Math. 33, part 1 (1979) 189-207. Zbl0414.22021MR546598
  23. [23] R. P. LANGLANDS, On the classification of irreducible representations of real algebraic groups, Representation Theory and Harmonic Analysis on Semisimple Lie Groups, Math. Surveys Monographs, 31, Amer. Math. Soc. Providence, RI (1989), 101-170. Zbl0741.22009MR1011897
  24. [24] J.-S. LI, Some remarks on unramified principal series of p-adic groups, Math. Ann. 292 (1992), 747-761. Zbl0804.22007MR1157324
  25. [25] G. LUSZTIG, Representations of affine Hecke algebras, Astérisque 171-172 (1989), 73-84. Zbl0699.22027MR1021500
  26. [26] C. MOEGLIN and J.-L. WALDSPURGER, Spectral decomposition and Eisenstein series. Une paraphrase de l’Écriture, Cambridge Tracts in Mathematics, 113, Cambridge, Cambridge University Press (1995). Zbl0846.11032
  27. [27] G. MUIĆ, Some results on square integrable representations; Irreducibility of standard representations, IMRN No. 14 (1998), 705-726. Zbl0909.22029MR1637097
  28. [28] M. REEDER, p-adic Whittaker functions and vector bundles on flag manifolds, Compositio Math. 85 (1993), 9-36. Zbl0819.22012MR1199202
  29. [29] I. SATAKE, Theory of spherical functions on reductive algebraic groups over p-adic fields, Publ. Math. IHES 18 (1963), 5-69. Zbl0122.28501MR195863
  30. [30] F. SHAHIDI, Local coefficients as Artin factors for real groups, Duke Math. J. 52 (1985), 973-1007. Zbl0674.10027MR816396
  31. [31] F. SHAHIDI, A proof of Langlands’ conjecture on Plancherel measures; complementary series for p-adic groups, Ann. of Math. 132 (1990), 273-330. Zbl0780.22005
  32. [32] F. SHAHIDI, On multiplicativity of local factors, Festschrift in honor of I.I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989), Israel Math. Conf. Proc., 3, Weizmann, Jerusalem (1990), 279-289. Zbl0841.11061MR1159120
  33. [33] F. SHAHIDI, Twists of a general class of L-functions by highly ramified characters, Canad. Math. Bull. 43 (2000), 380-384. Zbl1016.11016MR1776066
  34. [34] D. SOUDRY, Rankin-Selberg convolutions for SO2l+1 × GLn; Local theory, Memoirs of the AMS 500 (1993). Zbl0805.22007
  35. [35] D. SOUDRY, On the Archimedean Theory of Rankin-Selberg convolutions for SO2l+1 × GLn, Ann. scient. Éc. Norm. Sup. 28 (1995), 161-224. Zbl0824.11034MR1318068
  36. [36] D. SOUDRY, Full multiplicativity of gamma factors for SO2l+1 × GLn, preprint. Zbl1005.11027
  37. [37] J. TATE, Number theoretic background, Proc. Symp. Pure Math. 33 (1979), 3-26. Zbl0422.12007MR546607
  38. [38] H. YOSHIDA, On the unitarizability of principal series representations of p-adic Chevalley groups, J. Math. Kyoto Univ. 32 (1992), 155-233. Zbl0794.22016MR1145650
  39. [39] A. ZELEVINSKY, Induced representations of reductive p-adic groups II, Ann. Sci. École Norm. Sup. 13 (1980), 165-210. Zbl0441.22014MR584084

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.