On irreducibility of standard modules for generic representations

William Casselman; Freydoon Shahidi

Annales scientifiques de l'École Normale Supérieure (1998)

  • Volume: 31, Issue: 4, page 561-589
  • ISSN: 0012-9593

How to cite

top

Casselman, William, and Shahidi, Freydoon. "On irreducibility of standard modules for generic representations." Annales scientifiques de l'École Normale Supérieure 31.4 (1998): 561-589. <http://eudml.org/doc/82470>.

@article{Casselman1998,
author = {Casselman, William, Shahidi, Freydoon},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {irreducibility of standard modules},
language = {eng},
number = {4},
pages = {561-589},
publisher = {Elsevier},
title = {On irreducibility of standard modules for generic representations},
url = {http://eudml.org/doc/82470},
volume = {31},
year = {1998},
}

TY - JOUR
AU - Casselman, William
AU - Shahidi, Freydoon
TI - On irreducibility of standard modules for generic representations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1998
PB - Elsevier
VL - 31
IS - 4
SP - 561
EP - 589
LA - eng
KW - irreducibility of standard modules
UR - http://eudml.org/doc/82470
ER -

References

top
  1. [1] J. ARTHUR, Intertwining operators and residues I. Weighted characters, (J. Funct. Anal., Vol. 84, 1989, pp. 19-84). Zbl0679.22011MR90j:22018
  2. [2] D. BARBASCH and A. MOY, Whittaker models with an Iwahori fixed vector, Representation theory and analysis on homogeneous spaces, (AMS, Rhode Island 1994, pp. 101-105). Zbl0854.22019MR95j:22024
  3. [3] I. N. BERNSTEIN and A. V. ZELEVINSKY, Induced representations of reductive p-adic groups I, (Ann. Scient. Éc. Norm. Sup., Vol. 10, 1977, pp. 441-472). Zbl0412.22015MR58 #28310
  4. [4] A. BOREL and N. WALLACH, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, (Annals of Math. Studies, Vol. 94, 1980, Princeton University Press, Princeton). Zbl0443.22010MR83c:22018
  5. [5] W. CASSELMAN, Introduction to the theory of admissible representations of p-adic reductive groups, preprint. 
  6. [6] W. CASSELMAN, Canonical extensions of Harish-Chandra modules, (Cand. J. Math., Vol. 41, 1989, pp. 315-438). Zbl0702.22016MR90j:22013
  7. [7] W. CASSELMAN, Letter to Harish-Chandra, November 1982. 
  8. [8] W. CASSELMAN and J.A. SHALIKA, The unramified principal series of p-adic groups II, The Whittaker function, (Comp. Math., Vol. 41, 1980, pp. 207-231). Zbl0472.22005MR83i:22027
  9. [9] J. W. COGDELL and I. I. PIATETSKI-SHAPIRO, Converse theorems for GLn, (Publ. Math. I.H.E.S., Vol. 79, 1994, pp. 157-214). Zbl0814.11033MR95m:22009
  10. [10] S. FRIEDBERG and D. GOLDBERG, On local coefficients for nongeneric representations of some classical groups, Comp. Math., to appear. Zbl0938.22018
  11. [11] S. GELBART, I. I. PIATETSKI-SHAPIRO, and S. RALLIS, Explicit construction of automorphic L-functions, (Lecture Notes in Math 1254, Springer-Verlag, 1987). Zbl0612.10022MR89k:11038
  12. [12] HARISH-CHANDRA, Harmonic analysis on real reductive groups III. The Maass-Selberg relations and the Plancherel formula, (Annals of Math., Vol. 104, 1976, pp. 117-201). Zbl0331.22007MR55 #12875
  13. [13] H. JACQUET and J. A. SHALIKA, Rankin Selberg Convolutions : Archimedean theory, in Festschrift in Honor of I.I. PIATETSKI-SHAPIRO, Part I, Editors : S. GELBART, R. HOWE, and P. SARNAK, (Israel Math. Conf. Proc., Vol. 2, Weizmann, Jerusalem, 1990, pp. 125-207). Zbl0712.22011MR93d:22022
  14. [14] H. JACQUET and J. A. SHALIKA, The Whittaker models for induced representations, (Pacific J. Math., Vol. 109, 1983, pp. 107-120). Zbl0535.22017MR85h:22023
  15. [15] H. KIM, Residual spectrum for Sp4, (Comp. Math., Vol. 99, 1995, pp. 129-151). Zbl0877.11030
  16. [16] A.W. KNAPP and E.M. STEIN, Intertwining operators for semisimple groups II, (Invent. Math., Vol. 60, 1980, pp. 9-84). Zbl0454.22010MR82a:22018
  17. [17] R. P. LANGLANDS, On the classification of irreducible representations of real algebraic groups, in (Representation Theory and Harmonic Analysis on Semisimple Lie Groups, Editors P.J. SALLY, Jr. and D.A. VOGAN, Mathematical Surveys and Monographs, AMS, Vol. 31, 1989, pp. 101-170). Zbl0741.22009MR91e:22017
  18. [18] R. P. LANGLANDS, On Artin's L-functions, (Rice University Studies, Vol. 56, 1970, pp. 23-28). Zbl0245.12011
  19. [19] R. P. LANGLANDS, On the functional equations satisfied by Eisenstein series, (Lecture Notes in Math., Vol. 544, Springer-Verlag, 1976). Zbl0332.10018MR58 #28319
  20. [20] J.-S. LI, Some results on the unramified principal series of p-adic groups, (Math. Ann., Vol. 292, 1992, pp. 747-761). Zbl0804.22007MR93d:22023
  21. [21] C. MOEGLIN and J.-L. WALDSPURGER, Le spectre résiduel de GL(n), (Ann. Scient. Éc. Norm. Sup., Vol. 22, 1989, pp. 605-674). Zbl0696.10023MR91b:22028
  22. [22] M. REEDER, p-adic Whittaker functions and vector bundles on flag manifolds, (Comp. Math., Vol. 85, 1993, pp. 9-36). Zbl0819.22012MR93m:22020
  23. [23] F. SHAHIDI, A proof of Langlands' conjecture on Plancherel measures ; Complementary series for p-adic groups, (Ann. of Math., Vol. 132, 1990, pp. 273-330). Zbl0780.22005MR91m:11095
  24. [24] F. SHAHIDI, Local coefficients as Artin factors for real groups, (Duke Math. J., Vol. 52, 1985, pp. 973-1007). Zbl0674.10027MR87m:11049
  25. [25] F. SHAHIDI, On certain L-functions, (Amer. J. Math., Vol. 103, 1981, pp. 297-356). Zbl0467.12013MR82i:10030
  26. [26] F. SHAHIDI, On multiplicativity of local factors, in (Festschrift in Honor of I.I. Piatetski-Shapiro, Part II, Editors : S. GELBART, R. HOWE, and P. SARNAK, Israel Math. Conf. Proc., Vol. 3, Weizmann, Jerusalem, 1990, pp. 279-289). Zbl0841.11061MR93e:11144
  27. [27] F. SHAHIDI, Twisted endoscopy and reducibility of induced representations for p-adic groups, (Duke Math. J., Vol. 66, 1992, pp. 1-41). Zbl0785.22022MR93b:22034
  28. [28] A. SILBERGER, The Langlands quotient theorem for p-adic groups, (Math. Ann., Vol. 236, 1978, pp. 95-104). Zbl0362.20029MR58 #22413
  29. [29] A. SILBERGER, Introduction to Harmonic Analysis on Reductive p-adic Groups, Math. Notes of Princeton University Press, Vol. 23, Princeton, 1979. Zbl0458.22006MR81m:22025
  30. [30] D. SOUDRY, Rankin-Selberg convolutions for SO2l+1 × GLn : Local theory, preprint. 
  31. [31] D. SOUDRY, On the archimedean theory of Rankin-Selberg Convolutions for SO2l+1 × GLn, (Ann. Scient. Éc. Norm. Sup., Vol. 28, 1995, pp. 161-224). Zbl0824.11034MR96m:11043
  32. [32] B. SPEH, Some results on principal series for GL(n, ℝ), Ph.D. Dissertation, (Massachusetts Institute of Technology, June, 1977). 
  33. [33] B. SPEH and D. VOGAN, Reducibility of generalized principal series representations, (Acta Math., Vol. 145, 1980, pp. 227-299). Zbl0457.22011MR82c:22018
  34. [34] M. TADIĆ, On regular square integrable representations of p-adic groups, Amer. J. Math., Vol. 120, 1997, pp. 159-210. Zbl0903.22008MR99h:22026
  35. [35] M. TADIĆ, Construction of square integrable representations of classical p-adic groups, (Mathematica Gottingensis Schriftenreihe des Sonderforschungsbereichs Geometrie und Analysis, Heft, Vol. 11, 1993, pp. 1-48.20). 
  36. [36] M. TADIĆ, Square integrable representations of classical p-adic groups of segment type, (Mathematica Gottingensis Schriftenreihe des Sonderforschungsbereichs Geometrie und Analysis, Heft, Vol. 15, 1994, pp. 1-16). 
  37. [37] D. VOGAN, Gelfand-Kirillov dimension for Harish-Chandra modules, (Invent. Math., Vol. 48, 1978, pp. 75-98). Zbl0389.17002MR58 #22205
  38. [38] D. VOGAN, Unitarizability of certain series of representations, (Ann. of Math., Vol. 120, 1984, pp. 141-187). Zbl0561.22010MR86h:22028
  39. [39] D. VOGAN, Representations of real reductive Lie groups, Birkhauser, Boston, 1981. Zbl0469.22012MR83c:22022
  40. [40] N.R. WALLACH, Asymptotic expansions of generalized matrix entries of representations of real reductive groups, in (Lie Group Representations I, Lecture Notes in Math., Vol. 1024, Springer-Verlag, 1983, pp. 287-369). Zbl0553.22005MR85g:22029
  41. [41] A.V. ZELEVINSKY, Induced representations of reductive p-adic groups II, on irreducible representations of GL(n), (Ann. Scient. Éc. Norm. Sup., Vol. 13, 1980, pp. 165-210). Zbl0441.22014MR83g:22012
  42. [42] G. MUIĆ, Some results on square integrable representations ; Irreducibility of standard representations, preprint. Zbl0909.22029
  43. [43] Y. ZHANG, The holomorphy and nonvanishing of normalized local intertwining operators, (Pacific J. Math., Vol. 180, 1997, pp. 385-398). Zbl1073.22502MR98k:22076

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.