Non-amenable finitely presented torsion-by-cyclic groups

Alexander Yu. Ol’shanskii; Mark V. Sapir

Publications Mathématiques de l'IHÉS (2003)

  • Volume: 96, page 43-169
  • ISSN: 0073-8301

How to cite

top

Ol’shanskii, Alexander Yu., and Sapir, Mark V.. "Non-amenable finitely presented torsion-by-cyclic groups." Publications Mathématiques de l'IHÉS 96 (2003): 43-169. <http://eudml.org/doc/104188>.

@article{Ol2003,
author = {Ol’shanskii, Alexander Yu., Sapir, Mark V.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {non-amenable groups; finitely presented groups; Burnside groups; congruence extension property; geometric methods in combinatorial group theory; S-machines; presentations of groups; subgroup theorems},
language = {eng},
pages = {43-169},
publisher = {Institut des Hautes Etudes Scientifiques},
title = {Non-amenable finitely presented torsion-by-cyclic groups},
url = {http://eudml.org/doc/104188},
volume = {96},
year = {2003},
}

TY - JOUR
AU - Ol’shanskii, Alexander Yu.
AU - Sapir, Mark V.
TI - Non-amenable finitely presented torsion-by-cyclic groups
JO - Publications Mathématiques de l'IHÉS
PY - 2003
PB - Institut des Hautes Etudes Scientifiques
VL - 96
SP - 43
EP - 169
LA - eng
KW - non-amenable groups; finitely presented groups; Burnside groups; congruence extension property; geometric methods in combinatorial group theory; S-machines; presentations of groups; subgroup theorems
UR - http://eudml.org/doc/104188
ER -

References

top
  1. [1] S. I. ADIAN, Random walks on free periodic groups, Izv. Akad. Nauk SSSR, Ser. Mat., 46(6) (1982), 1139-1149. Zbl0512.60012MR682486
  2. [2] S. I. ADIAN, The Burnside problem and identities in groups, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 95, 311 pp. Berlin-New York: Springer, 1979. Zbl0417.20001MR537580
  3. [3] S. I. ADIAN, Periodic products of groups. Number theory, mathematical analysis and their applications, Trudy Math Inst. Steklov, 142 (1976), 3-21, 268. Zbl0424.20020MR532668
  4. [4] S. BANACH and A. TARSKI, Sur la décomposition de ensembles de points an parties respectivement congruentes. Fund. math., 6 (1924), 244-277. Zbl50.0370.02JFM50.0370.02
  5. [5] J. C. BIRGET, A. Yu. OL’SHANSKII, E. RIPS and M. V. SAPIR, Isoperimetric functions of groups and computational complexity of the word problem, Ann. Math., 156(2) (2002), 467-518. Zbl1026.20018
  6. [6] M. G. BRIN and C. C. SQUIER, Groups of piecewise linear homeomorphisms of the real line, Invent. Math., 79(3) (1985), 485-498. Zbl0563.57022MR782231
  7. [7] J. W. CANNON, W. J. FLOYD and W. R. PARRY, Introductory notes on Richard Thompson’s groups. L’Enseignement Mathématique (2), 42(3-4) (1996), 215-256. Zbl0880.20027
  8. [8] A. H. CLIFFORD and G. B. PRESTON, The algebraic theory of semigroups, Vol. I, Mathematical Surveys, No. 7, Providence, R.I.: American Mathematical Society, 1961. Zbl0111.03403MR132791
  9. [9] J. M. COHEN, Cogrowth and amenability of discrete groups, J. Funct. Anal., 48(3) (1982), 301-309. Zbl0499.20023MR678175
  10. [10] M. M. DAY, Amenable semigroups, Illinois J. Math., 1 (1957), 509-544. Zbl0078.29402MR92128
  11. [11] E. FØLNER, On groups with full Banach mean value, Math. Scand., 3 (1955), 243-254. Zbl0067.01203MR79220
  12. [12] Open problems in infinite-dimensional topology, ed. by Ross Geoghegan, The Proceedings of the 1979 Topology Conference (Ohio Univ., Athens, Ohio, 1979), Topology Proc., 4(1) (1979), 287-338 (1980). Zbl0448.57001MR583711
  13. [13] F. P. GREENLEAF, Invariant means on topological groups and their applications, New York: Van Nostrand Reinhold, 1969. Zbl0174.19001MR251549
  14. [14] R. I. GRIGORCHUK, Symmetrical random walks on discrete groups, Multicomponent random systems, Adv. Probab. Related Topics, 6 (1980), 285-325, New York: Dekker Zbl0475.60007MR599539
  15. [15] R. I. GRIGORCHUK, An example of a finitely presented amenable group that does not belong to the class EG, Mat. Sb., 189(1) (1998), 79-100. Zbl0931.43003MR1616436
  16. [16] F. HAUSDORFF, Grundzüge der Mengenlehre, Leipzig, 1914. JFM45.0123.01
  17. [17] S. V. IVANOV, On HNN-extensions in the class of groups of a large odd exponent, Preprint, 2002. Zbl1042.20024
  18. [18] S. V. IVANOV and A. Y. OL’SHANSKII, Hyperbolic groups and their quotients of bounded exponents, Trans. Amer. Math. Soc., 348(6) (1996), 2091-2138. Zbl0876.20023
  19. [19] H. KESTEN, Full Banach mean values on countable groups, Math. Scand., 7 (1959), 146-156. Zbl0092.26704MR112053
  20. [20] H. KESTEN, Symmetric random walks on groups, Trans. Amer. Math. Soc., 92 (1959), 336-354. Zbl0092.33503MR109367
  21. [21] O. G. KHARLAMPOVICH and M. V. SAPIR, Algorithmic problems in varieties, Internat. J. Algebra Comput., 5(4-5) (1995), 379-602. Zbl0837.08002MR1361261
  22. [22] Kourovka Notebook, Unsolved Problems in Group Theory, 8th edition, Novosibirsk, 1982. 
  23. [23] R. LYNDON and P. SCHUPP, Combinatorial group theory, Springer, 1977. Zbl0997.20037MR577064
  24. [24] K. V. MIKHAJLOVSKII, Some generalizations of the HNN-construction in the periodic case, #1063-B94, VINITI, Moscow, 1994, 59 pp. 
  25. [25] J. VON NEUMANN, Zur allgemeinen Theorie des Masses, Fund. math., 13 (1929), 73-116. JFM55.0151.01
  26. [26] P. S. NOVIKOV and S. I. ADIAN, Infinite periodic groups, I, II, III (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 32 (1968), 212-244, 251-524, 709-731. Zbl0194.03301MR240178
  27. [27] A. Yu. OL’SHANSKII, An infinite simple torsion-free Noetherian group, Izv. Akad. Nauk SSSR Ser. Mat., 43(6) (1979), 1328-1393. Zbl0431.20027
  28. [28] A. Yu. OL’SHANSKII, An infinite group with subgroups of prime order, Izvestia Akad. Nauk SSSR, Ser. Mat., 44(2) (1980), 309-321. Zbl0475.20025
  29. [29] A. Yu. OL’SHANSKII, On the question of the existence of an invariant mean on a group (Russian), Uspekhi Mat. Nauk, 35(4(214)) (1980), 199-200. Zbl0452.20032
  30. [30] A. Yu. OL’SHANSKII, The geometry of defining relations in groups, Moscow: Nauka, 1989. Zbl0676.20014
  31. [31] A. Yu. OL’SHANSKII, The SQ-universality of hyperbolic groups, Mat. Sb., 186(8) (1995), 119-132. Zbl0864.20023
  32. [32] A. Yu. OL’SHANSKII, On distortion of subgroups in finitely presented groups, Mat. Sb., 188(11) (1997), 51-98. Zbl0905.20020
  33. [33] A. Yu. OL’SHANSKII and M. V. SAPIR, Embeddings of relatively free groups into finitely presented groups, Contemp. Math., 264 (2000), 23-47. Zbl0987.20015
  34. [34] A. Yu. OL’SHANSKII and M. V. SAPIR, Length and Area Functions on Groups and Quasi-Isometric Higman Embeddings, J. Algebra and Comp., 11(2) (2001), 137-170. Zbl1025.20030
  35. [35] M. V. SAPIR, Problems of Burnside type and the finite basis property in varieties of semigroups, Izv. Akad. Nauk. SSSR., Ser. Mat., 51(2) (1987), 319-340. Zbl0646.20047MR897000
  36. [36] M. V. Sapir, J. C. BIRGET and E. RIPS, Isoperimetric and isodiametric functions of groups, 1997, Ann. Math., 156(2) (2002), 345-466. Zbl1026.20021MR1933723
  37. [37] W. SPECHT, Zur Theorie der messbaren Gruppen, Math. Z., 74 (1960), 325-366. Zbl0093.24603MR140641
  38. [38] J. TITS, Free subgroups of linear groups, J. Algebra, (20) (1972), 250-270. Zbl0236.20032MR286898
  39. [39] A. M. VERSHIK, Comments to papers by J. von Neumann, in “J. von Neumann, Selected works in functional analysis”, Moscow: Nauka, v1 (1987), 357-376. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.