Vertex algebras and the formal loop space
Mikhail Kapranov; Eric Vasserot
Publications Mathématiques de l'IHÉS (2004)
- Volume: 100, page 209-269
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topKapranov, Mikhail, and Vasserot, Eric. "Vertex algebras and the formal loop space." Publications Mathématiques de l'IHÉS 100 (2004): 209-269. <http://eudml.org/doc/104201>.
@article{Kapranov2004,
abstract = {We construct a certain algebro-geometric version $\mathcal \{L\}(X)$ of the free loop space for a complex algebraic variety X. This is an ind-scheme containing the scheme $\mathcal \{L\}^\{0\}(X)$ of formal arcs in X as studied by Kontsevich and Denef-Loeser. We describe the chiral de Rham complex of Malikov, Schechtman and Vaintrob in terms of the space of formal distributions on $\mathcal \{L\}(X)$ supported in $\mathcal \{L\}^\{0\}(X)$. We also show that $\mathcal \{L\}(X)$ possesses a factorization structure: a certain non-linear version of a vertex algebra structure. This explains the heuristic principle that “all” linear constructions applied to the free loop space produce vertex algebras.},
author = {Kapranov, Mikhail, Vasserot, Eric},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Ind-pro-schemes; chiral de Rham complex},
language = {eng},
pages = {209-269},
publisher = {Springer},
title = {Vertex algebras and the formal loop space},
url = {http://eudml.org/doc/104201},
volume = {100},
year = {2004},
}
TY - JOUR
AU - Kapranov, Mikhail
AU - Vasserot, Eric
TI - Vertex algebras and the formal loop space
JO - Publications Mathématiques de l'IHÉS
PY - 2004
PB - Springer
VL - 100
SP - 209
EP - 269
AB - We construct a certain algebro-geometric version $\mathcal {L}(X)$ of the free loop space for a complex algebraic variety X. This is an ind-scheme containing the scheme $\mathcal {L}^{0}(X)$ of formal arcs in X as studied by Kontsevich and Denef-Loeser. We describe the chiral de Rham complex of Malikov, Schechtman and Vaintrob in terms of the space of formal distributions on $\mathcal {L}(X)$ supported in $\mathcal {L}^{0}(X)$. We also show that $\mathcal {L}(X)$ possesses a factorization structure: a certain non-linear version of a vertex algebra structure. This explains the heuristic principle that “all” linear constructions applied to the free loop space produce vertex algebras.
LA - eng
KW - Ind-pro-schemes; chiral de Rham complex
UR - http://eudml.org/doc/104201
ER -
References
top- 1. M. Artin, B. Mazur, Etale Homotopy, Lect. Notes Math. 100, Springer, 1970. Zbl0182.26001MR883959
- 2. B. Bakalov, Beilinson-Drinfeld’s definition of a chiral algebra, available from http://www.math.berkeley.edu/∼bakalov/.
- 3. A. Beilinson, I. Bernstein, A proof of the Jantzen conjectures, in: S. Gelfand, S. Gindikin (eds.), I. M. Gelfand Seminar 1, 1–50, Adv. Soviet Math. 16, Amer. Math. Soc., Providence, RI, 1993. Zbl0790.22007
- 4. A. Beilinson, V. Drinfeld, Chiral algebras, available from http://zaphod.uchicago.edu/∼benzvi/. Zbl1138.17300
- 5. A. Beilinson, V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigensheaves, available from http://zaphod.uchicago.edu/∼benzvi/. Zbl0864.14007
- 6. S. Bosch, W. Lütkebohmert, M. Raynaud, Néron models, Springer, 1990. Zbl0705.14001MR1045822
- 7. C. Contou-Carrère, Jacobienne locale, groupe de bivecteurs de Witt universel et symbole modéré, C.R. Acad. Sci. Paris, Sér. I, Math., 318 (1994), 743–746. Zbl0840.14031MR1272340
- 8. J. Denef, F. Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., 135 (1999), 201–232. Zbl0928.14004MR1664700
- 9. A. Grothendieck, J. Dieudonné, Eléments de géométrie algébrique, Grund. Math. Wiss. 166, Boston, Basel, Berlin: Springer, 1971. Zbl0203.23301
- 10. A. Grothendieck, Éléments de géométrie algébrique IV (rédigés avec la collaboration de Jean Dieudonné), Publ. Math., Inst. Hautes Étud. Sci., 24 (1965), 5–231, 28 (1966), 5–255, 32 (1967), 5–361.
- 11. E. Frenkel, Vertex algebras and algebraic curves, Séminaire Bourbaki, 875 (2000), Astérisque 276 (2002), 299–339. Zbl0997.17015MR1886764
- 12. I. B. Frenkel, J. Lepowsky, A. Meurman, Vertex Operator Algebras and the Monster, Pure Appl. Math. 134, Boston: Academic Press, 1988. Zbl0674.17001MR996026
- 13. D. Gaitsgory, Notes on 2d conformal field theory and string theory, in: P. Deligne et al. (eds), Quantum fields and strings: a course for mathematicians, vol. 2, pp. 1017–1089, Providence, RI: Am. Math. Soc., 1999. Zbl1170.81429MR1701613
- 14. I. M. Gelfand, D. A. Kazhdan, D. B. Fuks, The actions of infinite-dimensional Lie algebras, Funct. Anal. Appl., 6 (1972), 9–13. Zbl0267.18023MR301767
- 15. A. Grothendieck, J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, SGA IV, Exp. I, Lect. Notes Math. 269, Springer, 1970. Zbl0256.18008MR463174
- 16. Y.-Z. Huang, J. Lepowsky, On the -module and the formal variable approachs to vertex algebras, Topics in geometry, pp. 175–202, Birkhäuser, 1996. Zbl0871.17023MR1390314
- 17. V. Kac, Vertex algebras for beginners, Univ. Lect. Ser. 10, Providence, RI: Am. Math. Soc., 1997. Zbl0861.17017MR1417941
- 18. M. Kapranov, Double affine Hecke algebras and 2-dimensional local fields, J. Am. Math. Soc., 14 (2001), 239–262. Zbl0958.20005MR1800352
- 19. K. Kato, Existence theorem for higher local fields, Invitation to higher local fields (Münster, 1999), pp. 165–195 (electronic), Geom. Topol. Monogr. 3, Geom. Topol. Publ., Coventry, 2000. Zbl1008.11061MR1804933
- 20. M. Kashiwara, T. Tanisaki, Kazhdan-Lusztig Conjecture for Symmetrizable Kac-Moody Lie Algebra. II Intersection Cohomologies of Schubert varieties, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), pp. 159–195, Progr. Math., 92, Birkhäuser, 1990. Zbl0743.17024MR1103590
- 21. D. A. Leites, Introduction to the theory of supermanifolds. Uspekhi Mat. Nauk., 35 (1980), 3–57. Zbl0439.58007MR565567
- 22. A. Malikov, V. Schechtman, A. Vaintrob, Chiral De Rham complex, Comm. Math. Phys., 204 (1999), 439–473. Zbl0952.14013MR1704283
- 23. A. N. Parshin, Higher-dimensional local fields and L-functions, Invitation to higher local fields (Münster, 1999), pp. 199–213 (electronic), Geom. Topol. Monogr. 3, Geom. Topol. Publ., Coventry, 2000. Zbl1008.11060MR1804934
- 24. R. W. Thomason, T. Trobaugh, Higher algebraic K-theory of schemes and of derived categories, in: P. Cartier et al. (eds.), Grothendieck Festschrift, vol. III, Progr. Math., 88, pp. 247–435, Birkhäuser, 1990. Zbl0731.14001MR1106918
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.