Vertex algebras and the formal loop space

Mikhail Kapranov; Eric Vasserot

Publications Mathématiques de l'IHÉS (2004)

  • Volume: 100, page 209-269
  • ISSN: 0073-8301

Abstract

top
We construct a certain algebro-geometric version ( X ) of the free loop space for a complex algebraic variety X. This is an ind-scheme containing the scheme 0 ( X ) of formal arcs in X as studied by Kontsevich and Denef-Loeser. We describe the chiral de Rham complex of Malikov, Schechtman and Vaintrob in terms of the space of formal distributions on ( X ) supported in 0 ( X ) . We also show that ( X ) possesses a factorization structure: a certain non-linear version of a vertex algebra structure. This explains the heuristic principle that “all” linear constructions applied to the free loop space produce vertex algebras.

How to cite

top

Kapranov, Mikhail, and Vasserot, Eric. "Vertex algebras and the formal loop space." Publications Mathématiques de l'IHÉS 100 (2004): 209-269. <http://eudml.org/doc/104201>.

@article{Kapranov2004,
abstract = {We construct a certain algebro-geometric version $\mathcal \{L\}(X)$ of the free loop space for a complex algebraic variety X. This is an ind-scheme containing the scheme $\mathcal \{L\}^\{0\}(X)$ of formal arcs in X as studied by Kontsevich and Denef-Loeser. We describe the chiral de Rham complex of Malikov, Schechtman and Vaintrob in terms of the space of formal distributions on $\mathcal \{L\}(X)$ supported in $\mathcal \{L\}^\{0\}(X)$. We also show that $\mathcal \{L\}(X)$ possesses a factorization structure: a certain non-linear version of a vertex algebra structure. This explains the heuristic principle that “all” linear constructions applied to the free loop space produce vertex algebras.},
author = {Kapranov, Mikhail, Vasserot, Eric},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Ind-pro-schemes; chiral de Rham complex},
language = {eng},
pages = {209-269},
publisher = {Springer},
title = {Vertex algebras and the formal loop space},
url = {http://eudml.org/doc/104201},
volume = {100},
year = {2004},
}

TY - JOUR
AU - Kapranov, Mikhail
AU - Vasserot, Eric
TI - Vertex algebras and the formal loop space
JO - Publications Mathématiques de l'IHÉS
PY - 2004
PB - Springer
VL - 100
SP - 209
EP - 269
AB - We construct a certain algebro-geometric version $\mathcal {L}(X)$ of the free loop space for a complex algebraic variety X. This is an ind-scheme containing the scheme $\mathcal {L}^{0}(X)$ of formal arcs in X as studied by Kontsevich and Denef-Loeser. We describe the chiral de Rham complex of Malikov, Schechtman and Vaintrob in terms of the space of formal distributions on $\mathcal {L}(X)$ supported in $\mathcal {L}^{0}(X)$. We also show that $\mathcal {L}(X)$ possesses a factorization structure: a certain non-linear version of a vertex algebra structure. This explains the heuristic principle that “all” linear constructions applied to the free loop space produce vertex algebras.
LA - eng
KW - Ind-pro-schemes; chiral de Rham complex
UR - http://eudml.org/doc/104201
ER -

References

top
  1. 1. M. Artin, B. Mazur, Etale Homotopy, Lect. Notes Math. 100, Springer, 1970. Zbl0182.26001MR883959
  2. 2. B. Bakalov, Beilinson-Drinfeld’s definition of a chiral algebra, available from http://www.math.berkeley.edu/∼bakalov/. 
  3. 3. A. Beilinson, I. Bernstein, A proof of the Jantzen conjectures, in: S. Gelfand, S. Gindikin (eds.), I. M. Gelfand Seminar 1, 1–50, Adv. Soviet Math. 16, Amer. Math. Soc., Providence, RI, 1993. Zbl0790.22007
  4. 4. A. Beilinson, V. Drinfeld, Chiral algebras, available from http://zaphod.uchicago.edu/∼benzvi/. Zbl1138.17300
  5. 5. A. Beilinson, V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigensheaves, available from http://zaphod.uchicago.edu/∼benzvi/. Zbl0864.14007
  6. 6. S. Bosch, W. Lütkebohmert, M. Raynaud, Néron models, Springer, 1990. Zbl0705.14001MR1045822
  7. 7. C. Contou-Carrère, Jacobienne locale, groupe de bivecteurs de Witt universel et symbole modéré, C.R. Acad. Sci. Paris, Sér. I, Math., 318 (1994), 743–746. Zbl0840.14031MR1272340
  8. 8. J. Denef, F. Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., 135 (1999), 201–232. Zbl0928.14004MR1664700
  9. 9. A. Grothendieck, J. Dieudonné, Eléments de géométrie algébrique, Grund. Math. Wiss. 166, Boston, Basel, Berlin: Springer, 1971. Zbl0203.23301
  10. 10. A. Grothendieck, Éléments de géométrie algébrique IV (rédigés avec la collaboration de Jean Dieudonné), Publ. Math., Inst. Hautes Étud. Sci., 24 (1965), 5–231, 28 (1966), 5–255, 32 (1967), 5–361. 
  11. 11. E. Frenkel, Vertex algebras and algebraic curves, Séminaire Bourbaki, 875 (2000), Astérisque 276 (2002), 299–339. Zbl0997.17015MR1886764
  12. 12. I. B. Frenkel, J. Lepowsky, A. Meurman, Vertex Operator Algebras and the Monster, Pure Appl. Math. 134, Boston: Academic Press, 1988. Zbl0674.17001MR996026
  13. 13. D. Gaitsgory, Notes on 2d conformal field theory and string theory, in: P. Deligne et al. (eds), Quantum fields and strings: a course for mathematicians, vol. 2, pp. 1017–1089, Providence, RI: Am. Math. Soc., 1999. Zbl1170.81429MR1701613
  14. 14. I. M. Gelfand, D. A. Kazhdan, D. B. Fuks, The actions of infinite-dimensional Lie algebras, Funct. Anal. Appl., 6 (1972), 9–13. Zbl0267.18023MR301767
  15. 15. A. Grothendieck, J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, SGA IV, Exp. I, Lect. Notes Math. 269, Springer, 1970. Zbl0256.18008MR463174
  16. 16. Y.-Z. Huang, J. Lepowsky, On the 𝒟 -module and the formal variable approachs to vertex algebras, Topics in geometry, pp. 175–202, Birkhäuser, 1996. Zbl0871.17023MR1390314
  17. 17. V. Kac, Vertex algebras for beginners, Univ. Lect. Ser. 10, Providence, RI: Am. Math. Soc., 1997. Zbl0861.17017MR1417941
  18. 18. M. Kapranov, Double affine Hecke algebras and 2-dimensional local fields, J. Am. Math. Soc., 14 (2001), 239–262. Zbl0958.20005MR1800352
  19. 19. K. Kato, Existence theorem for higher local fields, Invitation to higher local fields (Münster, 1999), pp. 165–195 (electronic), Geom. Topol. Monogr. 3, Geom. Topol. Publ., Coventry, 2000. Zbl1008.11061MR1804933
  20. 20. M. Kashiwara, T. Tanisaki, Kazhdan-Lusztig Conjecture for Symmetrizable Kac-Moody Lie Algebra. II Intersection Cohomologies of Schubert varieties, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), pp. 159–195, Progr. Math., 92, Birkhäuser, 1990. Zbl0743.17024MR1103590
  21. 21. D. A. Leites, Introduction to the theory of supermanifolds. Uspekhi Mat. Nauk., 35 (1980), 3–57. Zbl0439.58007MR565567
  22. 22. A. Malikov, V. Schechtman, A. Vaintrob, Chiral De Rham complex, Comm. Math. Phys., 204 (1999), 439–473. Zbl0952.14013MR1704283
  23. 23. A. N. Parshin, Higher-dimensional local fields and L-functions, Invitation to higher local fields (Münster, 1999), pp. 199–213 (electronic), Geom. Topol. Monogr. 3, Geom. Topol. Publ., Coventry, 2000. Zbl1008.11060MR1804934
  24. 24. R. W. Thomason, T. Trobaugh, Higher algebraic K-theory of schemes and of derived categories, in: P. Cartier et al. (eds.), Grothendieck Festschrift, vol. III, Progr. Math., 88, pp. 247–435, Birkhäuser, 1990. Zbl0731.14001MR1106918

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.